logo
Volume 13, Issue 1 (2024)                   J Police Med 2024, 13(1) | Back to browse issues page

Ethics code: ----------------------


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

beiranvand F, Shams N, Jaydari A, Nazifi N, Khademi P. Comparison of two immunogenic recombinant constructs based on T cell epitopes (extracted from whole proteome screening of Salmonella typhi bacteria) against typhoid fever; an immunoinformatic study. J Police Med 2024; 13 (1) : e11
URL: http://jpmed.ir/article-1-1276-en.html
1- Department of Microbiology and food hygiene, Faculty of Veterinary Medicine, Lorestan University, Tehran, Iran
2- Department of Microbiology and food hygiene, Faculty of Veterinary Medicine, Lorestan University, Tehran, Iran , Shams.n@lu.ac.ir
3- Department of Microbiology and Food hygiene, Faculty of Veterinary Medicine, Lorestan University, Tehran, Iran
4- Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
English Extended Abstract:   (267 Views)
Aims: Salmonella typhi is a gram-negative pathogen that causes typhoid fever. Since the least expensive way to combat this pathogen is vaccination, access to an effective vaccine is very important.
Materials and Methods: For this purpose, the proteome of this bacterium with 4322 proteins was extracted from the NCBI server and screened for antigenicity and allergenicity. Finally, the remaining proteins were used to predict T-cell-specific epitopes, and two immunogenic recombinant constructs consisting of epitopes and molecular adjuvant were designed (the first construct contains one repeat of each epitope and the second construct contains two repeats of each epitope). Physicochemical properties, secondary and tertiary structures, antigenicity, solubility, immune system stimulation ability, and molecular docking of each construct were evaluated by reliable online servers.
Findings: At the end of the evaluation of 4322 proteins, seven proteins remained, and the process of predicting their MHCI and MHCII epitopes was completed, after re-evaluation of the epitopes, the desired structures were designed. Despite the observed expected results in both immunogenic structures, the second structure showed more stability and antigenic (the antigenicity of the first and second structures was 0.6701 and 0.6760, respectively). While both structures were hydrophilic, the distribution of extended sheet and random coil structures in the second structure was higher than in the first structure. Furthermore, the second structure was able to bind to its cell surface receptor with a lower docking energy and shorter average hydrogen bond length. Both structures were able to direct the immune system towards stimulating cellular immunity, i.e. increasing the secretion of T helper and T cytotoxic cells.
Conclusion: Based on the presented results, it seems that the second construct, which includes two repeats of each epitope, is a more suitable candidate for the development of an immune vaccine against typhoid fever.
Article number: e11
Full-Text [PDF 1484 kb]   (82 Downloads)    
Article Type: Original Research | Subject: Police Medicine Related Technologies
Received: 2024/07/1 | Accepted: 2024/07/13 | Published: 2024/07/17

References
1. Ahmadi MH, Ahmadi A. An overview of bioterrorism and its association with the emerging coronavirus. New Cellularand Molecular Biotechnol J. 2022; 12 (46): 9-24. https://ncmbjpiau.ir/article-1-1451-en.html
2. Su L, Chiu C. Salmonella: clinical importance and evolution of nomenclature. Chang Gung Med J. 2007; 30(3):210. https://pubmed.ncbi.nlm.nih.gov/17760271/
3. Fox J, Galus C. Salmonella-associated conjunctivitis in a cat. J Vet Med Educ. 1977;171(9):845-7. https://pubmed.ncbi.nlm.nih.gov/336590/
4. Nosrat S, Sabokbar A, Dezfoolian M, Tabarraie B, Fallah F. Prevalence of Salmonella enteritidis, typhi and typhimurium from food products in Mofid hospital. Res Med. 2012;36(1):43-8. https://pejouhesh.sbmu.ac.ir/browse.php?a_id=1009&sid=1&slc_lang=en4
5. Das S, Kataria VK. Bioterrorism: A public health perspective. Med J Armed Forces India. 2010;66(3):255-60. https://www.sciencedirect.com/science/article/abs/pii/S0377123710800516 [DOI:10.1016/S0377-1237(10)80051-6] [PMID]
6. Plotkin S. History of vaccination. Proc Natl Acad Sci. 2014;111(34):12283-7. https://pubmed.ncbi.nlm.nih.gov/25136134/ [DOI:10.1073/pnas.1400472111] [PMID] [PMCID]
7. Wong K, Feeley JC. Isolation of Vi antigen and a simple method for its measurement. Appl Microbiol. 1972;24(4):628-33. [DOI:10.1128/am.24.4.628-633.1972] [PMID] [PMCID]
8. Syed KA, Saluja T, Cho H, Hsiao A, Shaikh H, Wartel TA, et al. Review on the recent advances on typhoid vaccine development and challenges ahead. Clin Infect Dis. 2020;71(Supplement_2):S141-S50. [DOI:10.1093/cid/ciaa504] [PMID] [PMCID]
9. jaydari A, Nazifi N, Forouharmehr A. Computational design of a novel multi-epitope vaccine against Coxiella burnetii. Hum Immunol. 2020 1;81(10-11):596-605. https://pesquisa.bvsalud.org/portal/resource/enamp/mdl-32718721 [DOI:10.1016/j.humimm.2020.05.010] [PMID]
10. Li Y, Liu X, Zhu Y, Zhou X, Cao C, Hu X, et al. Bioinformatic prediction of epitopes in the Emy162 antigen of Echinococcus multilocularis. Exp ther med. 2013; 1;6(2):335-40. https://www.spandidos-publications.com/10.3892/etm.2013.1142?text=fulltext# [DOI:10.3892/etm.2013.1142] [PMID] [PMCID]
11. Enany S. Structural and functional analysis of hypothetical and conserved proteins of Clostridium tetani. J infec public health. 2014;7(4):296-307. https://pubmed.ncbi.nlm.nih.gov/24802661 [DOI:10.1016/j.jiph.2014.02.002] [PMID]
12. Mak TW, Saunders ME. Immunity to pathogens. The Immune Response. 2006:641. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150295/ [DOI:10.1016/B978-012088451-3/50024-7]
13. Raupach B, Kaufmann SH. Immune responses to intracellular bacteria. Curr Opin Immunol. 2001;13(4):417-28. https://pubmed.ncbi.nlm.nih.gov/11498297/ [DOI:10.1016/S0952-7915(00)00236-3] [PMID]
14. Gutiérrez-Martínez E, Planès R, Anselmi G, Reynolds M, Menezes S, Adiko AC, et al. Cross-presentation of cell-associated antigens by MHC class I in dendritic cell subsets. Front immunol. 2015;6:363. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505393/ [DOI:10.3389/fimmu.2015.00363]
15. Canton J, Khezri R, Glogauer M, Grinstein S. Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages. Mol Biol Cell. 2014;25(21):3330-41. https://pubmed.ncbi.nlm.nih.gov/25165138/ [DOI:10.1091/mbc.e14-05-0967] [PMID] [PMCID]
16. El Chemaly A, Nunes P, Jimaja W, Castelbou C, Demaurex N. Hv1 proton channels differentially regulate the pH of neutrophil and macrophage phagosomes by sustaining the production of phagosomal ROS that inhibit the delivery of vacuolar ATPases. J Leukoc Biol. 2014;95(5):827-39. https://pubmed.ncbi.nlm.nih.gov/24415791/ [DOI:10.1189/jlb.0513251] [PMID]
17. Menozzi FD, Reddy VM, Cayet D, Raze D, Debrie A-S, Dehouck M-P, et al. Mycobacterium tuberculosis heparin-binding haemagglutinin adhesin (HBHA) triggers receptor-mediated transcytosis without altering the integrity of tight junctions. Microbes infec. 2006;8(1):1-9. https://pubmed.ncbi.nlm.nih.gov/15914062/ [DOI:10.1016/j.micinf.2005.03.023] [PMID]
18. Lei Y, Shao J, Ma F, Lei C, Chang H, Zhang Y. Enhanced efficacy of a multi-epitope vaccine for type A and O foot‑and-mouth disease virus by fusing multiple epitopes with Mycobacterium tuberculosis heparin-binding hemagglutinin (HBHA), a novel TLR4 agonist. Mol immunol. 2020;121:118-26. https://pubmed.ncbi.nlm.nih.gov/32199211/ [DOI:10.1016/j.molimm.2020.02.018] [PMID]
19. Chen X, Zaro JL, Shen W-C. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013;65(10):1357-69. https://pubmed.ncbi.nlm.nih.gov/23026637/ [DOI:10.1016/j.addr.2012.09.039] [PMID] [PMCID]
20. Kjerrulf M, Löwenadler B, Svanholm C, Lycke N. Tandem repeats of T helper epitopes enhance immunogenicity of fusion proteins by promoting processing and presentation. Mol immunol.1997;34(8-9):599-608. https://www.sciencedirect.com/science/article/abs/pii/S0161589097000783 [DOI:10.1016/S0161-5890(97)00078-3] [PMID]
21. Nazifi N, Tahmoorespur M, Sekhavati MH, Haghparast A, Behroozikhah AM. In vivo immunogenicity assessment and vaccine efficacy evaluation of a chimeric tandem repeat of epitopic region of OMP31 antigen fused to interleukin 2 (IL-2) against Brucella melitensis in BALB/c mice. BMC vet. Res. 2019;15:1-11. https://link.springer.com/article/10.1186/s12917-019-2074-7 [DOI:10.1186/s12917-019-2074-7] [PMID] [PMCID]
22. Tojo A, Endou H. Intrarenal handling of proteins in rats using fractional micropuncture technique. Am J Physiol Renal Physiol. 1992;263(4):F601-F6. https://journals.physiology.org/doi/abs/10.1152/ajprenal.1992.263.4.F601 [DOI:10.1152/ajprenal.1992.263.4.F601] [PMID]
23. Blouch K, Deen WM, Fauvel J-P, Bialek J, Derby G, Myers BD. Molecular configuration and glomerular size selectivity in healthy and nephrotic humans. Am J Physiol Renal Physiol. 1997;273(3):F430-F7. https://journals.physiology.org/doi/abs/10.1152/ajprenal.1997.273.3.F430 [DOI:10.1152/ajprenal.1997.273.3.F430] [PMID]
24. Forouharmehr A. Whole proteome screening to develop a potent epitope-based vaccine against Coxiella burnetii: a reverse vaccinology approach. J Biomol Struct Dyn. 2024; 2:1-13. https://www.tandfonline.com/doi/abs/10.1080/07391102.2024.2326198 [DOI:10.1080/07391102.2024.2326198] [PMID]
25. Shams N, Shakarami Gandabeh Z, Nazifi N, Forouharmehr A, Jaydari A, Rashidian E. Computational design of different epitope-based vaccines against Salmonella typhi. Int J Peptide Res Ther. 2020;26:1527-39. https://link.springer.com/article/10.1007/s10989-019-09959-4 [DOI:10.1007/s10989-019-09959-4]
26. Rashidian E, Gandabeh ZS, Forouharmehr A, Nazifi N, Shams N, Jaydari A. Immunoinformatics approach to engineer a potent poly-epitope fusion protein vaccine against Coxiella burnetii. Int J Pept Res Ther. 2020;26:2191-201. https://link.springer.com/article/10.1007/s10989-019-10013-6 [DOI:10.1007/s10989-019-10013-6]
27. Tomar N, De RK. Immunoinformatics: an integrated scenario. Immunol. 2010;131(2):153-68. https://pubmed.ncbi.nlm.nih.gov/20722763/ [DOI:10.1111/j.1365-2567.2010.03330.x] [PMID] [PMCID]
28. Korber B, LaBute M, Yusim K. Immunoinformatics comes of age. PLoS Comput Biol. 2006;2(6):e71. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0020071 [DOI:10.1371/journal.pcbi.0020071] [PMID] [PMCID]
29. Nazifi N, Mousavi SM, Moradi S, Jaydari A, Jahandar MH, Forouharmehr A. In Silico B Cell and T Cell epitopes evaluation of lipL32 and OmpL1 proteins for designing a recombinant multi-epitope vaccine against leptospirosis. Int J Infec. 2018;5(2). https://brieflands.com/articles/iji-63255 [DOI:10.5812/iji.63255]
30. Tahmoorespur M, Nazifi N, Pirkhezranian Z. In silico prediction of B-cell and T-cell epitopes of protective antigen of Bacillus anthracis in development of vaccines against anthrax. Iran J Appl Anim Sci. 2017;7(3):429-36. https://sanad.iau.ir/Journal/ijas/Article/102381

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.