1. Silva W, Gonçalves T, Härmä K, Schröder E, Obmann VC, Barroso MC, et al. Computer-aided diagnosis through medical image retrieval in radiology. Sci Report 2022;12(1):1-14. https://www.nature.com/articles/s41598-022-25027-2 [
DOI:10.1038/s41598-022-25027-2] [
PMID] [
PMCID]
2. Mandal D, Rao P, Biswas S. Semi-Supervised Cross-Modal Retrieval with Label Prediction. IEEE Trans Multimed. 2020;22(9):2345-53. https://arxiv.org/pdf/1812.01391.pdf [
DOI:10.1109/TMM.2019.2954741]
3. Safaei AA. Text-based multi-dimensional medical images retrieval according to the features-usage correlation. Med Biol Eng Comput. 2021;59(10):1993-2017. https://pubmed.ncbi.nlm.nih.gov/34415513/ [
DOI:10.1007/s11517-021-02392-0] [
PMID] [
PMCID]
4. Shamna P, Govindan VK, Abdul Nazeer KA. Content-based medical image retrieval by spatial matching of visual words. J King Saud Univ Comput Inf Sci. 2022;34(2):58-71. [
DOI:10.1016/j.jksuci.2018.10.002]
5. Pathak D, Raju USN. Content-based image retrieval using feature-fusion of GroupNormalized-Inception-Darknet-53 features and handcraft features. Optik (Stuttg). 2021;246. [
DOI:10.1016/j.ijleo.2021.167754]
6. Takagi Y, Hashimoto N, Masuda H, Miyoshi H, Ohshima K, Hontani H, et al. Transformer-based personalized attention mechanism for medical images with clinical records. J Pathol Inform. 2023;14:100185.
https://doi.org/10.1016/j.jpi.2022.100185 [
DOI:10.48550/arXiv.2206.03003] [
PMID] [
PMCID]
7. Wang X, Du Y, Yang S, Zhang J, Wang M, Zhang J, et al. RetCCL: Clustering-guided contrastive learning for whole-slide image retrieval. Med Image Anal. 2023;83:102645. [
DOI:10.1016/j.media.2022.102645] [
PMID]
8. Taheri F, Rahbar K, Salimi P. Effective features in content-based image retrieval from a combination of low-level features and deep Boltzmann machine. Multimed Tools Appl. 2022; 2023;1-24. https://link.springer.com/article/10.1007/s11042-022-13670-w [
DOI:10.1007/s11042-022-13670-w]
9. Mall PK, Singh PK, Yadav D. GLCM based feature extraction and medical X-RAY image classification using machine learning techniques. IEEE Conf Inf Commun Technol CICT. 2019. https://ieeexplore.ieee.org/document/9066263 [
DOI:10.1109/CICT48419.2019.9066263]
10. Garg M, Dhiman G. A novel content-based image retrieval approach for classification using GLCM features and texture fused LBP variants. Neural Comput Appl. 2023;33(4):1311-28. https://link.springer.com/article/10.1007/s00521-020-05017-z [
DOI:10.1007/s00521-020-05017-z]
11. Kumar A, Kim J, Cai W, Fulham M, Feng D. Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data. J Digit Imaging. 2013;26(6):1025-39. https://pubmed.ncbi.nlm.nih.gov/23846532/ [
DOI:10.1007/s10278-013-9619-2] [
PMID] [
PMCID]
12. Gordo A, Almazán J, Revaud J, Larlus D. End-to-End learning of deep visual representations for image retrieval. Int J Comput Vis. 2017;124(2):237-54. https://dl.acm.org/doi/10.1007/s11263-017-1016-8 [
DOI:10.1007/s11263-017-1016-8]
13. Chen Y, Tang Y, Huang J, Xiong S. Multi-scale triplet hashing for medical image retrieval. Comput Biol Med. 2023;155:106633. [
DOI:10.1016/j.compbiomed.2023.106633] [
PMID]
14. Karthik K, Kamath SS. A deep neural network model for content-based medical image retrieval with multi-view classification. Vis Comput. 2021;37(7):1837-50. https://link.springer.com/article/10.1007/s00371-020-01941-2 [
DOI:10.1007/s00371-020-01941-2]
15. Wang X, Lan R, Wang H, Liu Z, Luo X. Fine-grained correlation analysis for medical image retrieval. Comput Electr Eng. 2021;90:106992. [
DOI:10.1016/j.compeleceng.2021.106992]
16. Kobayashi K, Hataya R, Kurose Y, Miyake M, Takahashi M, Nakagawa A, et al. Decomposing normal and abnormal features of medical images for content-based image retrieval of glioma imaging. Med Image Anal. 2021;74:102227. [
DOI:10.1016/j.media.2021.102227] [
PMID]
17. Campbell D, William Garrett Jr by E, Speer KP. Assessment of skeletal maturity and prediction of adult height (TW3 method). 3rd edition. Cameron. Pp 110. London. 2002. [
DOI:10.1046/j.1440-1673.2003.01196.x]
18. Babaei M, Shirzad J, Keshavarz Meshkin Pham K, Faghih Fard P, eftekhari A. Challenges of Using Biometric Evidence in Identification. J Police Med. 2022; 11(1):e29. http://jpmed.ir/article-1-1100-en.pdf
19. Satoh M. Bone age: assessment methods and clinical applications. Clin Pediatr Endocrinol. 2015;24(4):143.
https://doi.org/10.1297/cpe.24.143 [
DOI:10.1297%2Fcpe.24.143] [
PMID] [
PMCID]
20. Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R. Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal. 2017;36:41-51. https://pubmed.ncbi.nlm.nih.gov/27816861/ [
DOI:10.1016/j.media.2016.10.010] [
PMID]
21. Li S, Liu B, Li S, Zhu X, Yan Y, Zhang D. A deep learning-based computer-aided diagnosis method of X-ray images for bone age assessment. Complex Intell Syst. 2022;8(3):1929-39. https://link.springer.com/article/10.1007/s40747-021-00376-z [
DOI:10.1007/s40747-021-00376-z] [
PMID] [
PMCID]
22. Liang B, Zhai Y, Tong C, Zhao J, Li J, He X, et al. A deep automated skeletal bone age assessment model via region-based convolutional neural network. Futur Gener Comput Syst. 2019;98:54-9. [
DOI:10.1016/j.future.2019.01.057]
23. Wibisono A, Saputri MS, Mursanto P, Rachmad J, Alberto, Yudasubrata ATW, et al. Deep learning and classic machine learning approach for automatic bone age assessment. Conf Intell Robot Syst ACIRS. 2019;235-40. https://ieeexplore.ieee.org/document/8935965 [
DOI:10.1109/ACIRS.2019.8935965]
24. Cardoso MJ, Arbel T, Carneiro G, Syeda-Mahmood T, Tavares JMRS, Moradi M, et al., editors. Deep learning in medical image analysis and multimodal learning for clinical decision support. 2017;10553. http://link.springer.com/10.1007/978-3-319-67558-9 [
DOI:10.1007/978-3-319-67558-9]
25. Escobar M, González C, Torres F, Daza L, Triana G, Arbeláez P. Hand pose estimation for pediatric bone age assessment. Lect Notes Comput Sci. 2019:531-9. http://dx.doi.org/10.1007/978-3-030-32226-7_59 [
DOI:10.1007/978-3-030-32226-7_59]
26. Awais M, Long X, Yin B, Chen C, Akbarzadeh S, Abbasi SF, et al. Can pre-trained convolutional neural networks be directly used as a feature extractor for video-based neonatal sleep and wake classification? BMC Res Notes. 2020;13(1):1-6.
https://doi.org/10.1186/s13104-020-05343-4 [
DOI:10.1186%2Fs13104-020-05343-4] [
PMID] [
PMCID]
27. De Capitani di Vimercati S, Foresti S, Livraga G, Samarati P. Digital infrastructure policies for data security and privacy in smart cities. Smart Cities Policies Financ. 2022;249-61. https://ipilab.usc.edu/research/baaweb/ [
DOI:10.1016/B978-0-12-819130-9.00007-3]
28. Liu S, Deng W. Very deep convolutional neural network based image classification using small training sample size. 2016;730-4. https://ieeexplore.ieee.org/document/7486599?denied=
29. Qasim M, Mahmood D, Bibi A, Masud M, Ahmed G, Khan S, et al. PCA-based advanced local octa-directional pattern (ALODP-PCA): A texture feature descriptor for image retrieval. Electron. 2022;11(2):202. https://www.mdpi.com/2079-9292/11/2/202/htm [
DOI:10.3390/electronics11020202]