1. Khajeamiri A.R, Heidari A. Evaluation the efficiency of health watch checkup in the diagnosis and treatment of diseases from the perspective of Hamedan police force. Paramed Sci Mil Health. 2019;14(1):25-33. [Persian]. http://jps.ajaums.ac.ir/article-1-174-en.html 2. Padmanabhan B, Horikoshi M. Crystallization and preliminary X-ray diffraction analysis of creatine amidinohydrolase from Actinobacillus. Acta Crystallogr D Bio Crystallogr. 2002 ;58(2):322-3.
https://doi.org/10.1107/S0907444901019928 [ DOI:10.1107/s0907444901019928] [ PMID] 3. Hacker D.L., Wurm, F.M. Comprehensive Biotechnology Second ed. Academic Press, Burlington.2011 https://www.sciencedirect.com/referencework/9780080885049/comprehensive-biotechnology 4. Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv. 2009;27(3):297-306. [ DOI:10.1016/j.biotechadv.2009.01.008] [ PMID] 5. Hoeffken HW, Knof SH, Bartlett PA, Huber R, Moellering H, Schumacher G. Crystal structure determination, refinement and molecular model of creatine amidinohydrolase from Pseudomonas putida. J Mol Biol. 1988;204(2):417-33. [ DOI:10.1016/0022-2836(88)90586-4] 6. Tabata M, Totani M, Endo J. Coimmobilized enzyme columns in determining serum creatinine using creatininase, creatinase and sarcosine oxidase by flow-injection analysis and chemiluminescence detection. Analytica Chimica Acta. 1992;262(2):315-21. https://in.booksc.eu/book/1978276/944cd5 [ DOI:10.1016/0003-2670(92)80069-J] 7. Chang MC, Chang CC, Chang JC. Cloning of a creatinase gene from Pseudomonas putida in Escherichia coli by using an indicator plate. Appl Environ Microbiol. 1992;58(10):3437-40. [ DOI:10.1128/aem.58.10.3437-3440.1992] [ PMID] [ PMCID] 8. Jeng FY, Lin SC. Characterization and application of PEGylated horseradish peroxidase for the synthesis of poly (2-naphthol). Process Biochem. 2006;41(7):1566-73. http://dx.doi.org/10.1016/j.procbio.2006.02.021 [ DOI:10.1016/j.procbio.2006.02.021] 9. Treetharnmathurot B, Ovartlarnporn C, Wungsintaweekul J, Duncan R, Wiwattanapatapee R. Effect of PEG molecular weight and linking chemistry on the biological activity and thermal stability of PEGylated trypsin. Int J Pharm. 2008;357(1-2):252-9. [ DOI:10.1016/j.ijpharm.2008.01.016] [ PMID] 10. Gómez L, Ramírez HL, Villalonga ML, Hernández J, Villalonga R. Immobilization of chitosan-modified invertase on alginate-coated chitin support via polyelectrolyte complex formation. Enzym Microbial Technol. 2006;38(1-2):22-7. http://dx.doi.org/10.1016/j.enzmictec.2004.10.008 [ DOI:10.1016/j.enzmictec.2004.10.008] 11. Stepankova V, Bidmanova S, Koudelakova T, Prokop Z, Chaloupkova R, Damborsky J. Strategies for stabilization of enzymes in organic solvents. Acs Catal. 2013 ;3(12):2823-36. [ DOI:10.1021/cs400684x] 12. Iyer PV, Ananthanarayan L. Enzyme stability and stabilization-aqueous and non-aqueous environment. Process Biochem. 2008;43(10):1019-32. [ DOI:10.1016/j.procbio.2008.06.004] 13. Matsuura T, Miyai K, Trakulnaleamsai S, Yomo T, Shima Y, Miki S, Yamamoto K, Urabe I. Evolutionary molecular engineering by random elongation mutagenesis. Nature Biotechnol. 1999;17(1):58-61. https://www.nature.com/articles/nbt0199_58 [ DOI:10.1038/5232] [ PMID] 14. Verma A, Nakade H, Simard JM, Rotello VM. Recognition and stabilization of peptide a-helices using templatable nanoparticle receptors. J A C S. 2004;126(35):10806-7. [ DOI:10.1021/ja047719h] [ PMID] 15. Lakowicz JR. Principles of fluorescence spectroscopy. Springer Sci Bus Media. 2013:673p. https://link.springer.com/book/10.1007/978-0-387-46312-4 16. Hellmann N, Schneider D. Hands on: using tryptophan fluorescence spectroscopy to study protein structure. Methods Mol Biol. 2019;1958:379-401. [ DOI:10.1007/978-1-4939-9161-7_20] [ PMID] 17. Yadav S, Devi R, Bhar P, Singhla S, Pundir CS. Immobilization of creatininase, creatinase and sarcosine oxidase on iron oxide nanoparticles/chitosan-g-polyaniline modified Pt electrode for detection of creatinine. Enzyme Microb Technol. 2012;50(4-5):247-54. [ DOI:10.1016/j.enzmictec.2012.01.008] [ PMID] 18. Afshari E, Amini-Bayat Z, Hosseinkhani S, Bakhtiari N. Cloning, expression and purification of Pseudomonas putida ATCC12633 Creatinase. Avicenna J Med Biotechnol. 2017;9(4):169-75. https://pubmed.ncbi.nlm.nih.gov/29090065/ 19. He F. Bradford protein assay. Bio-Protocol. 2011:e45-. [ DOI:10.21769/BioProtoc.45] 20. Appleyard G, Woods DD. The pathway of creatine catabolism by Pseudomonas ovalis. J Gen Microbiol. 1956;14(2):351-65. [ DOI:10.1099/00221287-14-2-351] [ PMID] 21. Nishiya Y. Structural comparison of creatinases for investigating substrate binding. Int J Anal Bio-Sci. 2014;2(4). 143-7. https://plaza.umin.ac.jp/~e-jabs/2/2.143.pdf 22. Berberich JA, Yang LW, Bahar I, Russell AJ. A stable three enzyme creatinine biosensor. 2. Analysis of the impact of silver ions on creatine amidinohydrolase. Acta Biomater. 2005;1(2):183-91. [ DOI:10.1016/j.actbio.2004.11.007] [ PMID] 23. Bai X, Li D, Ma F, Deng X, Luo M, Feng et al. Improved thermostability of creatinase from Alcaligenes Faecalis through non-biased phylogenetic consensus-guided mutagenesis. Microb Cell Fact. 2020;19(1):1-3. http://dx.doi.org/10.21203/rs.3.rs-49252/v2 [ DOI:10.21203/rs.3.rs-49252/v2]
|