[صفحه اصلی ]   [Archive] [ English ]  
:: دوره 10، شماره 3 - ( 4-1400 ) ::
جلد 10 شماره 3 صفحات 159-166 برگشت به فهرست نسخه ها
بخش‌بندی خودکار اسکلتی-عضلانی در تصاویر پزشکی
ملیحه مولائی*1، عیسی محمدنژاد2، رضا آقائی زاده ظروفی3
1- دانشکده مهندسی برق و کامپیوتر، قطب علمی کنترل و پردازش هوشمند، دانشگاه تهران، تهران، ایران ، m.molaie@ut.ac.ir
2- کارشناس ارشد کامپیوتر، مرکز تحقیقات تروما در عملیات پلیس، معاونت بهداشت،امداد ودرمان ناجا، تهران، ایران
3- دانشکده مهندسی برق و کامپیوتر، قطب علمی کنترل و پردازش هوشمند، دانشگاه تهران، تهران، ایران
چکیده:   (102 مشاهده)
اهداف: آسیب­ های اسکلتی- عضلانی یکی از مشکلاتی است که افراد بسیاری در سراسر جهان به‌خصوص سربازان و نیروهای نظامی که نیازمند فعالیت فیزیکی زیاد و خاص برای انجام وظایف رزمی هستند، به آن دچار می­شوند. به‌منظور تشخیص خودکار مشکلات اسکلتی- عضلانی در تصاویر پزشکی، مرحله اول؛ بخش بندی استخوان­ها و ماهیچه­ ها در این تصاویر است. هدف از انجام پژوهش حاضر، بخش­بندی خودکار استخوان­ها و ماهیچه­ های اسکلتی در تصاویر پزشکی است.
مواد و روش­ها: به‌منظور دستیابی به تصاویر بخش­های مختلف بدن در راستای شناسایی و بررسی آسیب­ها و بیماری­ها، می­توان از روش­های مختلف تصویربرداری پزشکی از جمله سی‌تی‌اسکن استفاده کرد. در پژوهش حاضر، ۱۲۰۰ تصویر سی‌تی‌اسکن مربوط به کارکنان ناجا به‌منظور بخش­ بندی ماهیچه­ ها و استخوان­ها ارزیابی شد. این داده‌ها از مرکز تصویربرداری بیمارستان فوق تخصصی حضرت ولیعصر ناجا در شهر تهران در سال ۱۳۹۸ اخذ گردید. برای بخش­بندی در تصاویر پزشکی، الگوریتم­ های پردازشی مختلفی وجود دارد که در پژوهش حاضر از الگوریتم خوشه­بندی فازی استفاده شد. در این الگوریتم؛ بسته به موقعیت آناتومیکی، مقطع موردِ بخش­بندی قرارگرفته، حضور استخوان متراکم یا اسفنجی در آن مقطع بررسی‌شده و هیستوگرام شدت روشنایی تصویر ارزیابی می‌گردد و تعداد کلاس‌های متفاوتی برای الگوریتم فازی تعریف می‌شود. در تمام مقاطعِ یک کلاس؛ شدت روشنایی برای ماهیچه­ ها لحاظ گردید.
یافته­ ها: نتایج حاصل از بخش ­بندی ماهیچه­ ها و استخوان­ها در مقاطع دوبعدی و سه‌بعدی نشان داده شد. بخش­بندی دوبعدی و سه‌بعدی، امکان مشاهده و بررسی استخوان­ های شکسته و تغییرات حجم ماهیچه ­ها در اثر آسیب­های مختلف و در طول درمان را فراهم نمود.
نتیجه­ گیری: استفاده از روش­های مختلف پردازش تصاویر پزشکی به‌منظور بخش ­بندی خودکار اسکلتی-عضلانی، به پزشکان در تشخیص و ارزیابی روند بهبود آسیب­ های اسکلتی- عضلانی در بین نیروهای نظامی کمک شایانی می‌کند.
واژه‌های کلیدی: مشکلات اسکلتی- عضلانی [MeSHپردازش تصویر با رایانه [MeSHبخش‌بندی خودکار ، نمایش سه‌بعدی. [MeSH
متن کامل [PDF 1148 kb]   (62 دریافت)    
نوع مقاله: پژوهشی اصيل | موضوع مقاله: آسیب‌های مرتبط با فعاليت انتظامی
دریافت: 1400/2/28 | پذیرش: 1400/3/30 | انتشار: 1400/4/10
فهرست منابع
1. http://www.boneandjointburden.org/,last seen on April 25, 2021.
2. Najafi Mehri S, Sadeghian M, Tayyebi A, Karimi Zarchi A, Asgari A. Epidemiology of physical injuries resulted from military training course. Journal Mil Med. 2010;12[2]:89-92.
3. Army Dot. Prevention and control of musculoskeletal injuries associated with physical training. Technical Bulletin Medical 592 [TB MED 592]. 2011.
4. Taanila H, Suni J, Pihlajamäki H, Mattila VM, Ohrankämmen O, Vuorinen P, et al. Musculoskeletal disorders in physically active conscripts: a one-year follow-up study in the Finnish Defence Forces. BMC musculoskeletal disorders. 2009;10[1]:89. [DOI:10.1186/1471-2474-10-89] [PMID] [PMCID]
5. Ghaderi M, Semsar B, Ahmadzadeh J, Mohebbi I. Musculoskeletal Disorders Related to Physical Activities of the Military Training Course and a Preventive Ergonomic Solution: Review Study. Journal Mil Med. 2017; 19[4]:317-25.
6. Jannesari M, SH A, Sadeghi M, Mohebi H. Causes of Health Care Referals During Military Training. Journal Mil Med. 2005;7[3]:187-92.
7. Farahani H, Sanei S, Naji M, Sadr S, Khakpoor S, Divandari H. The investigation of incidence rate and causes of physical injuries in sport activities and military parade and developing strategies to prevent them. Physical Education and Sport Science Quarterly [PESSQ]. 2009;2[5]:21-32.
8. Knapik J, Ang P, Reynolds K, Jones B. Physical fitness, age, and injury incidence in infantry soldiers. Army Research Inst of Environmental Medicine. 1993. [DOI:10.1097/00043764-199306000-00017] [PMID]
9. Almeida SA, Williams KM, Shaffer RA, Luz JT, Badong E. A Physical Training Program to Reduce Musculoskeletal Injuries in US Marine Corps Recruits, Version 1.0. Naval Health ResearchCenter San Diego CA; 1997.
10. Yokota F. Automated Segmentation of Bones and Muscles in the Hip and Thigh from X-ray Computed Tomography Scans: 2015.
11. Huang J, Griffith JF, Wang D, Shi L. Graph-cut-based segmentation of proximal femur from computed tomography images with shape prior. Journal of Medical and Biological Engineering. 2015;35[5]:594-607 [DOI:10.1007/s40846-015-0079-7]
12. Tan C, Yan Z, Zhang S, Belaroussi B, Yu HJ, Miller C, et al, editors. An automated and robust framework for quantification of muscle and fat inthe thigh. Pattern Recognition [ICPR], 2014 22nd International Conference on; 2014: IEEE. [DOI:10.1109/ICPR.2014.547] [PMID] [PMCID]
13. Brunner G, Nambi V, Yang E, Kumar A, Virani SS, Kougias P, et al. Automatic quantification of muscle volumes in magnetic resonance imaging scans of the lower extremities. Magnetic resonance imaging. 2011;29[8]:1065-75. [DOI:10.1016/j.mri.2011.02.033] [PMID]
14. Orgiu S, Lafortuna CL, Rastelli F, Cadioli M, Falini A, Rizzo G. Automatic muscle and fat segmentation in the thigh from T1‐Weighted MRI. Journal of Magnetic Resonance Imaging. 2016;43[3]:601-10. [DOI:10.1002/jmri.25031] [PMID]
15. Kemnitz J, Eckstein F, Culvenor AG, Ruhdorfer A, Dannhauer T, Ring-Dimitriou S, et al. Validation of an active shape model-based semi-automated segmentation algorithm for the analysis of thigh muscle and adipose tissue cross-sectional areas. Magnetic Resonance Materials in Physics, Biology and Medicine. 2017:1-15. doi:10.1007/s10334-017-0622-3 [DOI:10.1007/s10334-017-0622-3] [PMID] [PMCID]
16. Kemnitz J, Eckstein F, Culvenor A, Ruhdorfer A, Dannhauer T, Ring-Dimitriou S, et al. Validation of a 3D thigh muscle and adipose tissue segmentation method using statistical shape models. Osteoarthritis and Cartilage. 2018;26:S457-S8. [DOI:10.1016/j.joca.2018.02.867]
17. Prescott JW, Priddy M, Best TM, Pennell M, Swanson MS, Haq F, et al. An automated method to detect interstitial adipose tissue in thigh muscles for patients with osteoarthritis. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2009: IEEE. [DOI:10.1109/IEMBS.2009.5333260] [PMID] [PMCID]
18. Kovacs W, Liu C-Y, Summers R, Yao J, editors. Identification of muscle and subcutaneous and intermuscular adipose tissue on thigh MRI of muscular dystrophy. Biomedical Imaging [ISBI], 2016 IEEE 13th International Symposium on; 2016: IEEE. [DOI:10.1109/ISBI.2016.7493238] [PMID]
19. Imamoglu N, Gomez-Tames J, He S, Gu D-Y, Kita K, Yu W, editors. Unsupervised muscle region extraction by fuzzy decision based saliency feature integration on thigh MRI for 3D modeling. 2015 14th IAPR International Conference on Machine Vision Applications [MVA]; 2015: IEEE. [DOI:10.1109/MVA.2015.7153155]
20. Imamoglu N, Gomez-Tames J, Gonzalez J, Gu D, Yu W. Pulse-coupled neural network segmentation and bottom-up saliency-on feature extraction forthigh magnetic resonance imaging based 3D model construction. Journal of Medical Imaging and Health Informatics. 2014;4[2]:220-9. [DOI:10.1166/jmihi.2014.1245]
21. Südhoff I, de Guise JA, Nordez A, Jolivet E, Bonneau D, Khoury V, et al. 3D-patient-specific geometry of the muscles involved in knee motion from selected MRI images. Medical & biological engineering & computing. 2009;47[6]:579-87. [DOI:10.1007/s11517-009-0466-8] [PMID]
22. Jolivet E, Dion E, Rouch P, Dubois G, Charrier R, Payan C, et al. Skeletal muscle segmentation from MRI dataset using a model-based approach. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 2014;2[3]:138-45. [DOI:10.1080/21681163.2013.855146]
23. Prescott JW, Best TM, Swanson MS, Haq F, Jackson RD, Gurcan MN. Anatomically anchored template-based level set segmentation: application to quadriceps muscles in MR images from the Osteoarthritis Initiative. Journal of digital imaging. 2011;24[1]:28-43. doi:10.1007/s10278-009-9260-2 [DOI:10.1007/s10278-009-9260-2] [PMID] [PMCID]
24. Prescott JW, Swanson MS, Powell K, Gurcan MN, Haq F, Best TM, et al. editors. Template-based level set segmentation using anatomical information. 2009 24th International Symposium on Computer and Information Sciences; 2009: IEEE. [DOI:10.1109/ISCIS.2009.5291927] [PMID]
25. Ahmad E, Yap MH, Degens H, McPhee JS, editors. Atlas-registration based image segmentation of MRI human thigh muscles in 3D space. Medical Imaging 2014: Image Perception, Observer Performance, and Technology Assessment; 2014: International Society for Optics and Photonics. [DOI:10.1117/12.2043606]
26. Ahmad E, Yap MH, Degens H, McPhee J, editors. Enhancement of MRI human thigh muscle segmentation by template-based framework. 2014 IEEE International Conference on Control System, Computing and Engineering [ICCSCE 2014]; 2014: IEEE. [DOI:10.1109/ICCSCE.2014.7072753] [PMID]
27. Kroon D-J, Slump CH, Maal TJ, editors. Optimized anisotropic rotational invariant diffusion scheme on cone-beam CT. International Conference on Medical ImageComputing and Computer-Assisted Intervention; 2010: Springer. [DOI:10.1007/978-3-642-15711-0_28] [PMID]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Molaie M, Mohammadnejad E, Aghaeizadeh Zoroofi R. Automatic Musculoskeletal Segmentation in Medical Images. J Police Med. 2021; 10 (3) :159-166
URL: http://jpmed.ir/article-1-1022-fa.html

مولائی ملیحه، محمدنژاد عیسی، آقائی زاده ظروفی رضا. بخش‌بندی خودکار اسکلتی-عضلانی در تصاویر پزشکی. فصل‌نامه طب انتظامی. 1400; 10 (3) :159-166

URL: http://jpmed.ir/article-1-1022-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 10، شماره 3 - ( 4-1400 ) برگشت به فهرست نسخه ها
مرکز تحقیقات کاربردی معاونت بهداد Journal of Police Medicine
Persian site map - English site map - Created in 0.07 seconds with 29 queries by YEKTAWEB 4331