logo
دوره 11، شماره 1 - ( 1401 )                   جلد 11 شماره 1 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tabarestani L, Rahmati F, Jalili S, Esmaeili A. The Assessment of Oxidative Stress Parameters in the Urban Drivers Blood Serum in Comparison with Suburban Drivers with the Impact of Traffic Pollutants: A Prospective Cohort Study. J Police Med 2022; 11 (1) : e8
URL: http://jpmed.ir/article-1-1051-fa.html
طبرستانی لیلا، رحمتی فرشته، جلیلی شیرین، اسمعیلی امیر حسین. ارزیابی پارامترهای استرس اکسیداتیو در سرم خون رانندگان درون‌شهری در مقایسه با رانندگان برون‌شهری با نگاه تأثیر آلاینده‌های ترافیکی: مطالعه همگروهی آینده‌نگر. نشریه طب انتظامی. 1401; 11 (1)

URL: http://jpmed.ir/article-1-1051-fa.html


1- گروه بیوشیمی، دانشکده علوم زیستی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
2- پژوهشگاه علوم انتظامی و مطالعات اجتماعی ناجا، تهران، ایران
3- ساختمان علوم پزشکی، گروه علوم آزمایشگاهی، واحد بابل، دانشگاه آزاد اسلامی، بابل، ایران ، amir5762002@yahoo.com
چکیده:   (1775 مشاهده)
اهداف: آلودگی‌های ترافیکی یکی از معضلات جدی سلامت در سراسر جهان است. استرس اکسیداتیوی که در اثر رادیکال‌های آزاد ایجاد می‌شود، به طیف گسترده ای از آسیب‌های سلولی نظیر غیرفعال‌سازی آنزیم، پراکسیداسیون لیپید، اکسیداسیون پروتئین و لیپوپروتئین و بروز انواع بیماری‌ها منتهی می‌شود. هدف از این مطالعه ارزیابی پارامترهای استرس اکسیداتیو در سرم خون رانندگان درون‌شهری در مقایسه با رانندگان برون‌شهری با نگاه تأثیر آلاینده‌های ترافیکی بود.
مواد و روش‌ها: مطالعه حاضر یک مطالعهٔ همگروهی آینده‌نگر است. جامعه آماری مورد بررسی رانندگان مرد مراجعه‌کننده به طب کار قائمشهر در فاصله زمانی سال‌های 1398 تا 1399 بود. با هدف تعیین پارامترهای اکسیداتیو (NO و MDA) و آنتی‌اکسیدانتی (TAC، CAT) در سرم خون، 45 راننده وسیلهٔ نقلیه داخل شهری که در معرض آلاینده‌های ترافیکی بودند و 45 راننده برون‌شهری به عنوان گروه شاهد به روش نمونه‌گیری احتمالی سیستماتیک انتخاب شدند. داده‌ها با استفاده از آزمون کای دو و آزمون  T-test ارزیابی شدند و از نرم‌افزار SPSS 22 استفاده شد.
یافته‌ها: داده‌های حاصل از این مطالعه نشان داد که میانگین شاخص‌های نیتریک اکساید، ظرفیت آنتی‌اکسیدانی تام و آنزیم کاتالاز در گروه رانندگان در معرض آلاینده‌های ترافیکی پایین‌تر از گروه شاهد بود، در حالی که پراکسیداسیون لیپیدی در این گروه در مقایسه با رانندگان گروه شاهد بالاتر بود که در سطح احتمال آماری 1 درصد (0/001>p) معنادار بود.
نتیجه‌گیری: استرس اکسیداتیو ناشی از آلودگی‌های ترافیکی باعث کاهش ظرفیت آنتی اکسیدانی تام (TAC) و افزایش شرایط اکسیداتیو در گروه رانندگان در معرض آلاینده‌های ترافیکی می‌شود که این شرایط می‌تواند سلامتی این افراد را تهدید کند.
شماره‌ی مقاله: e8
متن کامل [PDF 1099 kb]   (2288 دریافت)    
نوع مقاله: پژوهشی اصيل | موضوع مقاله: طب ترافیک
دریافت: 1400/6/30 | پذیرش: 1400/9/28 | انتشار: 1400/10/12

فهرست منابع
1. Bowatte G, Lodge CJ, Knibbs LD, Erbas B, Perret JL, Jalaludin B, et al. Traffic related air pollution and development and persistence of asthma and low lung function. Environ Int. 2018;113:170-6. doi: 10.1016/j.envint.2018.01.028. [DOI:10.1016/j.envint.2018.01.028] [PMID]
2. Grande G, Ljungman PL, Eneroth K, Bellander T, Rizzuto D. Association between cardiovascular disease and long-term exposure to air pollution with the risk of dementia. JAMA Neurol. 2020;77(7):801-9. doi:10.1001/jamaneurol.2019.4914. [DOI:10.1001/jamaneurol.2019.4914] [PMID] [PMCID]
3. Miller MR, Newby DE. Air pollution and cardiovascular disease: car sick. Cardiovasc Res. 2020;116(2):279-94. [DOI:10.1093/cvr/cvz228] [PMID]
4. Li X, Jin L, Kan H. Air pollution: a global problem needs local fixes. Nature. 2019;570(7762):437-9. doi: 10.1038/d41586-019-01960-7. [DOI:10.1038/d41586-019-01960-7] [PMID]
5. Leni Z, Cassagnes LE, Daellenbach KR, El Haddad I, Vlachou A, Uzu G, et al. Oxidative stress-induced inflammation in susceptible airways by anthropogenic aerosol. Plos One. 2020;15(11):e0233425. [DOI:10.1371/journal.pone.0233425] [PMID] [PMCID]
6. Hahad O, Lelieveld J, Birklein F, Lieb K, Daiber A, Münzel T. Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress. Int J Mol Sci. 2020;21(12):4306. doi: 10.3390/ijms21124306. [DOI:10.3390/ijms21124306] [PMID] [PMCID]
7. Zhang AL, Balmes JR, Lutzker L, Mann JK, Margolis HG, Tyner T, et al. Traffic-related air pollution, biomarkers of metabolic dysfunction, oxidative stress, and CC16 in children. J Expo Sci Environ Epidemiol. 2021;1-8. [DOI:10.1038/s41370-021-00378-6] [PMID]
8. Lim S, Barratt B, Holliday L, Griffiths CJ, Mudway IS. Characterising professional drivers' exposure to traffic-related air pollution: Evidence for reduction strategies from in-vehicle personal exposure monitoring. Environ Int. 2021;153:106532. [DOI:10.1016/j.envint.2021.106532] [PMID]
9. Leni Z, Künzi L, Geiser M. Air pollution causing oxidative stress. Curr Opin Toxicol. 2020;20:1-8. http://dx.doi.org/10.1016/j.cotox.2020.02.006 [DOI:10.1016/j.cotox.2020.02.006]
10. Miller MR. Oxidative stress and the cardiovascular effects of air pollution. Free Radic Biol Med. 2020;151:69-87. doi: 10.1016/j.freeradbiomed.2020.01.004. [DOI:10.1016/j.freeradbiomed.2020.01.004] [PMID] [PMCID]
11. Moulton PV, Yang W. Air pollution, oxidative stress, and Alzheimer's disease. J Environ Public Health. 2012;2012:472751. doi: 10.1155/2012/472751. [DOI:10.1155/2012/472751] [PMID] [PMCID]
12. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30(1):11-26. doi: 10.1007/s12291-014-0446-0. [DOI:10.1007/s12291-014-0446-0] [PMID] [PMCID]
13. Forman HJ, Zhang H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9)689-709. [DOI:10.1038/s41573-021-00233-1] [PMID] [PMCID]
14. Lü JM, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med. 2010;14(4):840-60. DOI:10.1111/j.1582-4934.2009.00897.x [DOI:10.1111/j.1582-4934.2009.00897.x] [PMID] [PMCID]
15. Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex J Med. 2018;54(4):287-93. [DOI:10.1016/j.ajme.2017.09.001]
16. Rapti K, Diokmetzidou A, Kloukina I, Milner DJ, Varela A, Davos CH, et al. Opposite effects of catalase and MnSOD ectopic expression on stress induced defects and mortality in the desmin deficient cardiomyopathy model. Free Radic Biol Med. 2017;110:206-18. DOI: 10.1016/j.freeradbiomed.2017.06.010 [DOI:10.1016/j.freeradbiomed.2017.06.010] [PMID]
17. Wills E. Mechanisms of lipid peroxide formation in animal tissues. Biochem J. 1966;99(3):667-76. doi: 10.1042/bj0990667. [DOI:10.1042/bj0990667] [PMID] [PMCID]
18. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem. 1982;126(1):131-8. doi: 10.1016/0003-2697(82)90118-x. [DOI:10.1016/0003-2697(82)90118-X]
19. Fuentes J, Miro J, Riera J. Simple colorimetric method for seminal plasma zinc assay. Andrologia. 1982;14(4):322-7. doi: 10.1111/j.1439-0272.1982.tb02270.x. [DOI:10.1111/j.1439-0272.1982.tb02270.x] [PMID]
20. Aebi H. Catalase. In: Bergmeyer H, editor. Methods of enzymatic analysis. Netherlands: Elsevier; 1974. p. 673-84. https://www.sciencedirect.com/science/article/pii/B9780120913022500323 [DOI:10.1016/B978-0-12-091302-2.50032-3]
21. Lück H. Catalase. In: Bergmeyer H, editor. Methods of enzymatic analysis. Netherlands: Elsevier; 1965. P. 885-94. https://www.sciencedirect.com/science/article/pii/B9780123956309501584 [DOI:10.1016/B978-0-12-395630-9.50158-4]
22. Kelly FJ. Oxidative stress: its role in air pollution and adverse health effects. Occup Environ Med. 2003;60(8):612-6. doi:10.1136/oem.60.8.612 [DOI:10.1136/oem.60.8.612] [PMID] [PMCID]
23. Schraufnagel DE, Balmes JR, Cowl CT, De Matteis S, Jung S-H, Mortimer K, et al. Air pollution and noncommunicable diseases: A review by the forum of international respiratory societies' environmental committee, part 2: Air pollution and organ systems. Chest. 2019;155(2):417-26. doi: 10.1016/j.chest.2018.10.041. [DOI:10.1016/j.chest.2018.10.041] [PMID] [PMCID]
24. Rajagopalan S, Al-Kindi SG, Brook RD. Air pollution and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72(17):2054-70. DOI: 10.1016/j.jacc.2018.07.099 [DOI:10.1016/j.jacc.2018.07.099] [PMID]
25. Brucker N, Moro AM, Charão MF, Durgante J, Freitas F, Baierle M, et al. Biomarkers of occupational exposure to air pollution, inflammation and oxidative damage in taxi drivers. Sci Total Environ. 2013;463:884-93. DOI: 10.1016/j.scitotenv.2013.06.098 [DOI:10.1016/j.scitotenv.2013.06.098] [PMID]
26. Chang Y-T, Chang W-N, Tsai N-W, Huang C-C, Kung C-T, Su Y-J, et al. The roles of biomarkers of oxidative stress and antioxidant in Alzheimer's disease: a systematic review. BioMed Res Int. 2014;2014:182303. doi: 10.1155/2014/182303. [DOI:10.1155/2014/182303] [PMID] [PMCID]
27. Nagababu E, Chrest FJ, Rifkind JM. Hydrogen-peroxide-induced heme degradation in red blood cells: the protective roles of catalase and glutathione peroxidase. Biochim Biophys Acta. 2003;1620(1-3):211-7. doi: 10.1016/s0304-4165(02)00537-8. [DOI:10.1016/S0304-4165(02)00537-8]
28. Mohanty J, Nagababu E, Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol. 2014;5:84. doi: 10.3389/fphys.2014.00084. [DOI:10.3389/fphys.2014.00084] [PMCID]
29. Rossner Jr P, Svecova V, Milcova A, Lnenickova Z, Solansky I, Santella RM, et al. Oxidative and nitrosative stress markers in bus drivers. Mutat Res. 2007;617(1-2):23-32. doi: 10.1016/j.mrfmmm.2006.11.033. [DOI:10.1016/j.mrfmmm.2006.11.033] [PMID]
30. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. doi:10.1155/2014/360438 [DOI:10.1155/2014/360438] [PMID] [PMCID]
31. Maria LS, Valentini J, Paniz C, Schmitt G, Garcia SC, et al. Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quimica Nova. 2009;32(1):169-74. [DOI:10.1590/S0100-40422009000100032]
32. Dejmek J, Solanskỳ I, Benes I, Lenícek J, Srám RJ. The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environ Health Perspect. 2000;108(12):1159-64. doi: 10.1289/ehp.001081159 [DOI:10.1289/ehp.001081159] [PMID] [PMCID]
33. Coleman JW. Nitric oxide in immunity and inflammation. Int Immunopharmacol. 2001;1(8):1397-406. doi: 10.1016/s1567-5769(01)00086-8. [DOI:10.1016/S1567-5769(01)00086-8]
34. Nazi I, Shogoo. Study of levels of ceruloplasmin, uric acid, iron, zinc, total antioxidant side (TAC) and CRP in the blood serum of healthy smokers compared to non-smokers in the age range of 45-70. Master Thesis in Biochemistry, Islamic Azad University, Babol Branch. (2018).
35. Seyed Ahmadian SM, Sh J, Shirzad H, Sadeghizadeh M. Comparative evaluation of the efficacy of milk and milk containing Nano-Curcumin on lead toxicity in Huh7-1x-ARE-luc cell-line. Pathobiol Res. 2019;22(4):181-7.[persian]. https://www.magiran.com/paper/2130000?lang=en

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.