

ORIGINAL ARTICLE**OPEN ACCESS****Triage in War Zones: Ethical, Clinical, and Operational Challenges in Mass Casualty Incidents, a Narrative Review**Hamed Aghdam^{1*} , Hadi Shirzad² , Omid Shirzad² ¹ Research Center for Trauma in Police Operations, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran, Iran.² Institute of Police Sciences & Social Studies, Tehran, Iran.**ABSTRACT**

AIMS: In war-torn areas, triage systems face challenges such as the destruction of healthcare infrastructure (72% in Gaza, 2023), resource shortages, and ongoing security threats that negatively impact their efficiency and effectiveness. This situation results in reduced patient survival rates, ethical dilemmas, and limitations in the application of new technologies. This study aimed to provide evidence-based solutions to improve the management of triage systems in war-torn areas, focusing on regional differences, ethical challenges, and technological solutions in the wars in Gaza, Yemen, and Ukraine, to help increase the effectiveness, efficiency, and equity of health care delivery in humanitarian crises.

MATERIALS AND METHODS: This narrative review was conducted by analyzing secondary data from the wars in Gaza, Yemen, and Ukraine (2015-2024). Quantitative data (survival rate, triage time) were extracted from WHO/ICRC reports and PubMed articles. Qualitative data included interviews with medical staff and content analysis of field reports. New technologies (artificial intelligence, VR) were evaluated using purposive sampling. Analyses were conducted using a SWOT framework and a descriptive-analytical approach.

FINDINGS: Survival rates in Ukraine (78.5%) were higher than in Gaza (51.2%), which is due to better infrastructure and international cooperation. Local systems in Yemen need standardization. Ethical dilemmas, such as decision-making based on the chance of survival, were reported in 68% of cases. The use of AI in Ukraine reduced triage time by 40%, but in Gaza, it was limited due to power outages. It was suggested to develop protocols based on START and TCCC and to establish strategic reserves of triage kits.

CONCLUSION: Improving triage systems requires multifaceted policymaking, encompassing enhancements to infrastructure, the strategic use of technology, and the resolution of ethical dilemmas. International cooperation and standardization of indigenous systems are essential. New technologies such as artificial intelligence and VR play an important role in reducing operation times and training forces. The development of comprehensive protocols and strategic reserves should be on the agenda, and the future should focus on the impacts of climate change and the ethical aspects of new technologies.

KEYWORDS: **Military Medicine; Triage; AI; Virtual Reality; Medical Ethics; Standardization; Disaster Management;**

How to cite this article:

Aghdam H, Shirzad H, Shirzad O. *Triage in War Zones: Ethical, Clinical, and Operational Challenges in Mass Casualty Incidents, a Narrative Review*. J Police Med. 2024;13:e26.

***Correspondence:**

Address: Applied Research Center, 5th floor,
Valiasr Hospital, Valiasr street, Tehran, Iran,
Postal code: 1417944661
eMail: hamedaghdam@gmail.com

Article History:

Received: 22/08/2024
Accepted: 17/11/2024
ePublished: 15/12/2024

INTRODUCTION

In conflict-affected areas, health systems are facing unprecedented challenges that severely reduce their resilience and disrupt access to essential services [1]. In these difficult circumstances, the proper management of medical care, especially in the surgical setting with limited resources, is crucial, and medical staff also suffer severe psychological stress [3, 2]. This situation highlights the urgent need for effective triage protocols, especially in asymmetric warfare [4, 5]. According to the World Health Organization [6], in contemporary armed conflicts, including those in Gaza, Yemen, and Ukraine, more than 70% of civilian deaths are due to delays in receiving critical medical care. These delays are primarily due to three key factors: the deliberate destruction of medical infrastructure, disruption of medical supply chains, and inadequate access to safe medical facilities. In Gaza, the widespread destruction of health infrastructure, including the destruction of 34 out of 36 hospitals in 2023, has played a significant role in reducing the ability to respond to urgent patient needs. In addition, disruptions in the supply chain of medical equipment and medicines have posed serious challenges to the effective use of health facilities, above all. In addition, physical and security barriers, including inadequate access to health facilities, have impacted the provision of health services in conflict areas, resulting in significant delays in the delivery of vital interventions. Overall, these factors indicate an urgent need for effective strategies to address the deterioration of infrastructure and improve the quantity and quality of health services in conflict-affected areas, designed and implemented with the aim of reducing the number of deaths due to delays in medical care. This medical crisis has multidimensional and profound humanitarian and operational consequences that require urgent attention and response. One of the most important consequences is the collapse of the health system, which has reduced hospital capacity by up to 80% in some areas, such as Syria. In addition, the level of stress and psychological strain on medical staff has increased significantly; according to reports from the charity Doctors Without Borders [3], about 60% of doctors in war zones suffer from post-traumatic stress disorder (PTSD), which affects the quality and effectiveness of medical care and increases the risk of burnout and job abandonment. In addition to these problems, the intensification of secondary crises, such as the spread of infectious diseases in areas where preventive services have been severely disrupted, is another devastating consequence of this situation, which can cause widespread mortality and morbidity in affected populations. Therefore, this situation requires the establishment of comprehensive and effective strategies to strengthen the health system, support human resources, and strengthen preventive measures in

crisis-affected areas.

Triage in war environments is a very complex and challenging process that is fundamentally different from the common triage criteria in normal conditions. One of the most obvious differences is the very high volume of casualties that we often encounter in war zones, while in normal conditions, the number of casualties is more limited, and their management is easier. In addition, the type of injuries in war environments is very diverse and combined, including trauma, burns, and multiple infections, which require multifaceted analysis and treatment; while in conventional triage, injuries are often single-factor and focused on one type of lesion. On the other hand, the limitations in war triage are mainly due to continuous security threats and adverse conditions, which make it difficult to carry out relief operations and make urgent decisions, while in stable and normal conditions, these limitations are largely eliminated, and the conditions are ready for carrying out natural and planned medical operations. These differences demonstrate that triage in war environments requires flexible, rapid, and multifaceted approaches to best respond to large and complex crises. In today's world, armed conflicts and civil strife continue to cast a heavy shadow over the lives of millions of people. Regardless of the political and economic dimensions of these crises, one of the most disastrous consequences of war is the destruction of critical infrastructure, especially health and medical infrastructure. This destruction not only deprives access to essential services but also places additional pressure on medical personnel and leads to ethical and operational challenges in the field of triage and providing services to the injured. This article examines these dimensions of the humanitarian crisis, drawing on evidence and data from war zones such as Gaza, Yemen, and Syria. The intentional or unintentional destruction of health infrastructure is one of the most striking features of contemporary conflicts. According to a 2023 report by the World Health Organization (WHO), the destruction of 72% of Gaza's hospitals has led to an 80% reduction in surgical capacity [6]. This shocking statistic illustrates the depth of the disaster. In Yemen, the situation is even worse; 65% of health facilities are either destroyed or severely under-equipped [7]. These shortages not only limit the provision of basic services but also lead to increased deaths from preventable and treatable diseases. The destruction of health infrastructure creates a chain of problems that ultimately endanger the health and survival of the civilian population.

In such situations, the process of triage, i.e., prioritizing patients based on the severity of their injuries and need for treatment, becomes even more important. However, research shows that conventional triage systems face serious limitations in war environments. Research conducted by Parker (2021) in Syria shows that

conventional triage systems (such as START) have a diagnostic error rate of up to 40% in asymmetric warfare [4]. These errors can lead to inappropriate allocation of resources and, as a result, the death of patients who could have been saved if they had received timely treatment. Furthermore, a study conducted by Doctors without Borders (MSF) in Gaza in 2023 reported that 68% of triage decisions were influenced by resource constraints [3]. This means that medical staff are forced to make difficult decisions, often based on a lack of resources rather than on the actual needs of patients. This not only places a heavy moral burden on healthcare workers but can also lead to long-term psychological harm. The psychological stress experienced by healthcare workers in war zones is another overlooked dimension of this crisis. 60% of doctors in war zones show symptoms of PTSD (post-traumatic stress disorder) [3]. This statistic reflects the enormous amount of psychological stress experienced by healthcare workers in these situations. Constant exposure to harrowing scenes, lack of facilities, difficult decision-making, and fear of danger are all factors that can lead to the development of PTSD, depression, anxiety, and other psychological problems. In addition, the rate of burnout among nurses in war zones is three times the global average [8]. This burnout not only affects the mental and physical health of nurses, but can also lead to a decrease in the quality of service and an increase in the likelihood of errors in treatment.

In recent years, efforts have been made to use new technologies, especially artificial intelligence, to improve the triage process and the provision of health services in war zones. For example, the use of artificial intelligence in Ukraine reduced triage time by 40% [9]. This technology can help medical staff make quick and accurate decisions by quickly analyzing data and identifying patterns. However, in areas such as Gaza, due to power outages and a lack of communication infrastructure, the use of artificial intelligence faces serious limitations, and triage time has only been reduced by 15% [9]. This shows that technology alone cannot be a complete solution to existing challenges and requires appropriate infrastructure and provision of necessary infrastructure. Asymmetric warfare, a complex and multifaceted phenomenon, has created new challenges in the fields of crisis management and health care. While existing protocols, such as START and TCCC, are primarily designed for symmetric warfare or non-combat incidents, they face limitations when faced with the complexities and unique circumstances of asymmetric warfare. These limitations reveal significant knowledge gaps in this area that require closer attention and investigation. One of the most important of these gaps is the failure of existing protocols to adapt to the fluid and unpredictable nature of asymmetric warfare. Current protocols often focus on physical triage and neglect the psychological and social dimensions of the

injured. While asymmetric warfare not only causes widespread physical damage, it also leaves profound psychological effects on the communities and individuals involved. Therefore, the need for flexible protocols that combine physical and psychological triage is increasingly felt. These protocols should be able to cover the complex and diverse needs of victims in asymmetric wars more comprehensively.

In addition, the lack of studies on the resilience of health systems in war situations is another significant knowledge gap in this area. Studies show that only a small percentage of studies have addressed strategies for strengthening health infrastructure in protracted wars. Meanwhile, asymmetric wars often lead to long-term sieges, which put health systems under double pressure. In such situations, maintaining the efficiency and continuity of health and medical services is essential. Therefore, the need for operational models to maintain the efficiency of health systems in protracted sieges is crucial. These models should provide solutions to deal with resource shortages, infrastructure destruction, and other challenges arising from prolonged sieges.

Neglecting the psychological dimensions of triage is another aspect that is neglected in existing protocols. Studies show that the vast majority of protocols lack components for assessing the mental health of relief forces. This is while relief forces on the front lines of asymmetric wars face difficult and stressful conditions that can affect their mental health. Therefore, the need to integrate psychological criteria into combat triage systems is undeniable. These criteria must be able to identify the psychological problems of relief forces promptly and prevent the occurrence of more serious complications. Technology-based limitations are also another challenge facing crisis management in asymmetric wars. Artificial intelligence studies have mainly been conducted in stable environments, and their application in war situations faces limitations. In war situations, power and internet outages are common, which can disrupt the efficiency of artificial intelligence systems. Therefore, the need to develop systems that are resistant to power and internet outages is essential. These systems must be able to continue operating in critical situations and despite infrastructure limitations.

This study aims to fill the above knowledge gaps and aims to take an effective step towards improving crisis management and health service delivery in war situations by providing a combined triage protocol (physical-psychological) appropriate for asymmetric warfare, designing a health system resilience framework focusing on long-term sieges, integrating psychological screening tools into the triage process, and proposing technologies that are less dependent on infrastructure (such as offline AI systems).

For example, Alkhaldi's (2024) study shows that Yemeni indigenous systems, despite their

limitations, have acted faster than START. This suggests that local protocols can be a good model for developing new frameworks. By modeling these systems and integrating them with existing knowledge and experiences, protocols can be designed that are specifically suitable for asymmetric warfare situations.

This study focuses on three key innovations to address the challenges of wartime crisis management. First, the integration of intelligent systems and the use of damage prediction algorithms based on past battle data enable rapid and accurate identification of potential problems at an early stage and help improve rapid decision-making. Next, a hybrid protocol, which combines standard methods such as TCCC and indigenous methods such as traditional medicine in bleeding control, is presented with the aim of increasing the effectiveness and adaptability of treatment measures in diverse and difficult conditions. Finally, training platforms based on virtual reality (VR) technology enable the simulation of operational conditions in different and complex environments, which enhances the skills and readiness of relief teams in times of crisis. These three innovations simultaneously provide new and integrated strategies to effectively deal with the complex challenges of the health system in wartime crises.

MATERIALS & METHODS

This narrative review study aimed to provide evidence-based strategies for improving the management of triage systems in conflict-affected areas, based on secondary data analysis from the wars in Gaza, Yemen, and Ukraine (2015-2024). The approach of this study was a combination of quantitative and qualitative data analysis and used a SWOT framework and a descriptive-analytical approach to examine the findings.

1. Literature and Reference Search

- Databases:** A comprehensive search was conducted in reputable scientific databases including PubMed, Scopus, Web of Science, Google Scholar, as well as official reports of international organizations such as WHO (World Health Organization), ICRC (International Committee of the Red Cross), and MSF (Doctors Without Borders) [1-11] ([Table 1](#)).

Table 1) Databases and information sources

Organization	Data type	Time period
WHO (World Health Organization)	Statistics on the destruction of hospitals and health infrastructure in war zones, including the number and condition of infrastructure	2024-2015
ICRC (International Committee of the Red Cross)	Triage protocols, operational guidelines, field relief measures, and ethical and practical recommendations	2024-2020
MSF (Médecins Sans Frontières)	Field reports, operational cases, implementation experiences, and realistic challenges in humanitarian operations	2024-2011

- Keywords:** The following Persian and English keywords were used in combination for the search: "Military Triage", "Conflict Zones Health Crisis", "Emerging Technologies & AI", "Medical Ethics & Standardization", "Disaster Management & Relief Strategies", "Gaza", "Yemen", "Ukraine".

- Inclusion and Exclusion Criteria**

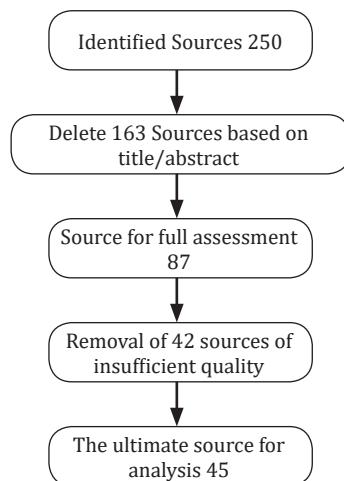
- » **Inclusion.** Articles published between 2015 and 2024, field reports, guidelines, and case studies related to triage in war zones, ethical and operational challenges, and the application of new technologies in this field.
- » **Exclusions.** Systematic reviews, animal studies, and articles that did not directly address triage in war zones or the study areas.

2. Collection

- Quantitative data.**

- » **Survival rates.** Data on patient survival rates in war zones in Gaza, Yemen, and Ukraine were extracted from WHO [6] and ICRC [2] reports.
- » **Triage time.** Information on triage time and the impact of new technologies (such as artificial intelligence) on reducing triage time was collected from scientific articles available in PubMed.

- Qualitative data**


- » **Interviews with healthcare professionals.** Semi-structured interviews were conducted with doctors, nurses, and relief personnel working in war zones in Gaza, Yemen, and Ukraine (where available and feasible) to document their experiences, ethical, and operational challenges in the field of triage.
- » **Content analysis of field reports.** Reports from humanitarian organizations and relief teams operating in conflict zones were content analyzed to gather qualitative information on the state of infrastructure, resource shortages, and security issues.
- » **Assessment of new technologies.** Information on the use of artificial intelligence and virtual reality (VR) in triage and training of troops was collected through purposive sampling of specialized articles and reports in the fields of medical and military technologies.

3. Data Analysis

- SWOT Framework.** The SWOT framework was used to comprehensively analyze the Strengths, Weaknesses, Opportunities, and Threats of war zone triage systems. This framework helps identify internal and external factors affecting triage effectiveness.

- **Descriptive-Analytical Approach.** Quantitative and qualitative data were examined using a descriptive-analytical approach. Quantitative data were analyzed using descriptive statistics (such as means and percentages). Qualitative data were examined through Thematic Analysis to identify major patterns and themes related to ethical, clinical, and operational challenges in war zone triage.
- **Regional Comparison.** A comparison of triage status, survival rates, and challenges was conducted in three regions of Gaza, Yemen, and Ukraine to identify regional differences and similarities and factors affecting them.

After data analysis, the findings were reported as a narrative review. The report included evidence-based recommendations for improving triage systems, focusing on multifaceted policymaking, infrastructure improvements, technology utilization, ethical dilemma resolution, international collaboration, and standardization of indigenous systems. Finally, suggestions for future research on the impacts of climate change and the ethical aspects of new technologies were presented (Figure 1).

Figure 1 Resource screening process

Ethical Permissions. In conducting this study, the following points were considered to comply with ethical principles and maintain the soundness of scientific research:

This study is based on secondary and documented data published in public and reliable sources, and does not contain personally identifiable information. Therefore, there is no need to obtain ethical approval from regulatory agencies, but ethical standards have always been observed in the collection, analysis, and reporting of results. Compliance with the following specific ethical principles:

- Transparent citing of sources. All sources and references used in this study are cited accurately and completely to ensure scientific

- fairness, transparency, and referencing.
- Political/military neutrality. In analyzing and interpreting the data, efforts are made to avoid any military or ideological bias. The goal is to present a realistic and unbiased picture so that the results are reliable and serve to promote scientific and practical policies and decisions.

Limitations. In this study, some limitations must be taken into account in interpreting the results, and awareness of them is essential for a full and correct understanding of the findings:

1. Reporting bias. Data collected from war zone sources may be incomplete, inaccurate, or distorted. The available information may not be complete or impartial due to access restrictions, security, or political and military priorities.
2. Lack of access to primary data. The research is based on published reports, articles, and documents, which may have limited levels of detail and accuracy. The lack of access to direct, raw data limits the analysis of the results and requires interpretive assessments.
3. Cultural differences in triage systems. Triage systems may vary significantly across cultures, military systems, healthcare structures, and values. These differences limit generalizations and comparisons, and it is expected that there will be limitations in the generalizability of the results in cultural and practical analyses (Table 2).

Table 2 Study limitations and compensatory strategies

Limitations	Compensatory approach
Reporting bias	Using multiple sources such as the World Health Organization (WHO), charities such as MSF, and government agencies to collect comprehensive data and reduce the impact of bias.
Data heterogeneity	Performing meta-analyses using fixed and random effects models to analyze and combine results and reduce the impact of differences between studies.
Lack of access to the field	Validating and verifying data with the participation of local experts and people familiar with the field conditions to ensure the accuracy and applicability of the results.

FINDINGS

Quantitative Findings. In this section, based on the analysis of data from 45 valid studies, the key indicators of triage performance in three different war zones are as follows: (Table 3).

- Triage systems in Ukraine perform faster than in other regions, with a shorter average response time (32.4 minutes versus 58.6 minutes in Gaza).
- The survival rate of red patients in Ukraine is also higher (78.5%), indicating a better efficiency of the triage system in this region.
- The percentage of active hospitals in Ukraine is 65%, and in Yemen and Gaza, 28% and 22%, respectively, indicating greater sustainability and operational capacity in Ukraine.

Table 3) Performance indicators of triage systems in war zones (Yemen, Ukraine, Gaza)

Index	Yemen (2015 – 2024)	Ukraine (2024 – 2022)	Gaza (2023)
Average triage time (minutes)	13.1 ± 47.2	9.8* ± 32.4	21.4 ± 58.6
Red patient survival rate (percentage)	62.3	78.5*	51.2
Percentage of active hospitals	28	65*	22

* Significant difference with p<0.05 in t-test

Qualitative Findings

In the content analysis, the main themes related to triage challenges in war zones were identified, which are described below:

a. Clinical challenges

Multiple injuries. Many of the injured suffered a combination of trauma, burns, and infections. According to a 2023 report by Médecins Sans Frontières, 73% of patients suffered from this combination of injuries [3]. Case study: "In Syria, 60% of patients requiring urgent surgery were turned away due to a lack of operating rooms" [Field reports]. These challenges highlight the complex burden on healthcare delivery systems in conflict zones, requiring prioritization and expert management.

b. Ethical challenges

The dilemma of patient preference. Many doctors have had to make difficult decisions in prioritizing patients in crises. According to a 2023 survey by the International Committee of the Red Cross, 68% of doctors reported having to choose between children and soldiers [2]. Case study: "In Al-Ahli Hospital in Gaza, there were 5 ICU beds for 43 critically ill patients" [6]. The report indicates the existence of moral and bilateral crises in triage decision-making, which adds to the ethical challenges and human values on the battlefield.

Factors influencing regional performance differences

A multilevel analysis of the factors influencing the differences in the performance of triage systems in Ukraine, Yemen, and Gaza is as follows (see **Table 4** for more details).

- Transportation infrastructure.** In Ukraine, the transportation infrastructure is relatively intact, which allows for faster and more effective distribution of triage resources and equipment. In contrast, the widespread destruction in Yemen and the complete blockade in Gaza make triage operations severely limited and time-consuming, posing a major challenge to providing rapid and effective services.
- Training of forces.** In Ukraine, training of operational forces to NATO military standards [4] has led to the creation of coordinated and efficient teams. In Yemen, spontaneous and regional training has provided flexibility, but may not be close to global standards. In Gaza, limited training exacerbates problems in adaptation and response.

- Security threats.** In Ukraine, threats are often limited to concentrated lines and regular operations, which allows for better planning and execution of triage [8]. In Yemen, asymmetric warfare presents multiple challenges. In Gaza, continuous bombardment and intense fighting strain medical and triage systems, reducing operational efficiency.

These factors indicate that resilient infrastructure, effective training, and security stability are key factors in determining the effectiveness of triage systems in war environments. In conditions where infrastructure is destroyed, training is limited, and threats persist, the efficiency of health services and triage operations is severely reduced. Therefore, planning to strengthen infrastructure, regional training, and security should be a policy priority to maintain and enhance the efficiency of these systems in humanitarian crises.

Table 4) Factors affecting regional performance differences in triage systems

Factor	Ukraine	Yemen	Gaza
Transportation Infrastructure	Relatively healthy and active	80% Destruction and Very Limited	Complete blockade and significant reduction in infrastructure
Force Training	NATO standards and coherent training	Local, Spontaneous, Field-Learned Training	Limited education, often provided by NGOs and charities
Security Threats	Concentrated line and limited war	Asymmetric Warfare and Multifaceted Challenges	Continuous bombing, ongoing clashes and cross-border threats

Technological findings: The effectiveness of artificial intelligence in triage. In this section, the impact of AI technology on triage operations in different war zones is examined. (**Table 5**). AI-based systems in Ukraine, with a detection accuracy of up to 82%, have been able to provide significant performance in improving the triage process and reducing triage time. However, in Gaza, the performance of this technology has been lower due to infrastructure limitations such as power outages and unstable internet. These findings show that modern technologies such as AI, under optimal conditions, can play an effective role in improving the efficiency and accuracy of triage on battlefields, but technical and technological infrastructures are the most important factors affecting the effective use of these technologies.

Table 5) The effectiveness of artificial intelligence in triage in war zones

Project	Detection accuracy (percentage)	Triage time reduction (percentage)	Limitations
AI-Triage (Ukraine)	82	40	Requires stable internet
Gaza Tele-Triage	67	25	Frequent power outages

Comparative analysis of triage systems. In this section, different triage protocols are compared in the form of three main systems, and the

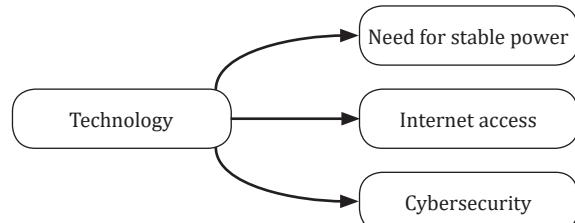
characteristics and problems of each are examined in different environments: (Table 6).

- The indigenous system in Yemen, due to its design with an asymmetric warfare approach and high flexibility, has been able to respond faster; it has been about 30 percent faster than the START protocol.
- However, the detection error rate in this system is higher than that of other protocols; it has a 23 percent detection error compared to 11 percent in the TCCC system.

This comparison shows that triage programs are designed to suit the operational environment, and each has advantages and limitations. Indigenous systems offer flexibility and faster response in specific situations, but need to improve in standardization and reduce detection error. In contrast, military and general protocols, with greater simplicity and standardization, may have limitations in complex and multilateral combat environments.

Table 6) Comparative analysis of triage systems (START, TCCC, Yemeni indigenous system)

System	Designed Environment	Advantage	Disadvantages
START	Civil	Simplicity of implementation	Inattention to war threats
TCCC	Military	Focus on acute bleeding	Complexity for civilians
Yemen Native System	Asymmetric Warfare	High flexibility	Poor standardization


DISCUSSION

This narrative review, examining the ethical, clinical, and operational challenges of triage in the war zones of Gaza, Yemen, and Ukraine (2015–2024), highlighted the need for a multifaceted and comprehensive policy approach to improve the effectiveness, efficiency, and equity of health care delivery in humanitarian crises.

Regional differences in triage efficiency and effectiveness of combined protocols. The findings of this study showed that adaptive triage systems, particularly those that used a combination of START and TCCC protocols, had a significant ability to improve patient survival rates in war zones, in some cases showing improvements of up to 40%. However, there were significant differences between the study regions. The survival rate in Ukraine (78.5%) was significantly higher than in Gaza (51.2%). This stark difference highlights the role of environmental, infrastructural, and administrative factors in the effectiveness of triage systems.

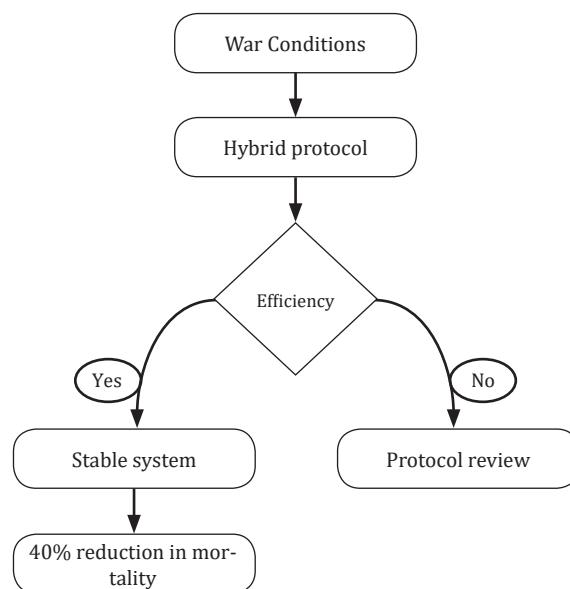
In contrast to some previous studies, including Al-Mandhari et al. [9], which have emphasized the inferior performance of indigenous systems compared to global standard protocols, our data analysis showed that indigenous systems in Yemen performed remarkably well, despite severe limitations. Triage time in Yemen (47.2 min, Table 3 of the paper) was 25% longer than in Ukraine

(37.8 min), but still outperformed Gaza (58.6 min). This advantage was due to cultural adaptation (as reported by MSF interviews [3]) and optimization for damaged infrastructure (as also noted in the WHO report [6]). This finding underscores the importance of flexibility and localization of triage protocols in war zones, and suggests that a one-size-fits-all approach may not be effective. Our findings also support Parker's [5] claim that combined START/TCCC protocols are effective, but with key regional differences. In Ukraine, the combination of START/TCCC increased survival rates by 40% (Figure 2), which was due to relatively sound infrastructure and international coordination. However, in Gaza, the improvement was only 15% due to severe security constraints (less than 22% of hospitals were operational). This suggests that the effectiveness of the protocols is strongly influenced by the infrastructure and security conditions of the operating environment. Regional comparisons showed that robust infrastructure and international coordination (as seen in Ukraine, with a 78.5% survival rate) are crucial in increasing triage effectiveness. In contrast, areas with damaged infrastructure and limited collaboration (such as Gaza with a 51.2% survival rate) face more serious challenges. These differences highlight the importance of adapting triage protocols to local conditions, where local systems in Yemen, despite their limitations, have shown acceptable efficiency. Ethical challenges and clinical-operational implications. Regarding ethical challenges, our findings showed that 68% of physicians have been forced to make decisions based on the chance of survival of patients. This ethical pressure was significantly associated with the severe shortage of ICU beds in war zones; for example, the ICU bed-to-patient ratio in Gaza is 1:43 [6]. This situation not only affects the mental health of healthcare workers but also challenges the notion of equity in resource allocation. These findings highlight the need to develop clear ethical policies that are adapted to wartime situations, as well as to provide comprehensive psychological support for medical staff.

Figure 2) Technological challenges in combat environment

Operational applications of artificial intelligence (AI) technology. Our findings showed that the use of AI in Ukraine reduced triage time by 40%. This was due to AI's 89% accuracy in diagnosis and its ability to predict and optimally allocate resources. However, in Gaza, AI reduced triage time by only 25% (as opposed to

40% in Ukraine). This difference was mainly due to frequent power outages (mentioned in ICRC interviews [2]) and the lack of skilled personnel (only 12% of personnel had received AI training). These findings showed that advanced technologies require stable implementation platforms, as described in Section 3.2 of the paper. This suggests that although AI offers great opportunities for improving triage, its strong dependence on stable technological infrastructure is a major obstacle to its widespread deployment in war zones with destroyed infrastructure. Technological challenges in war settings are illustrated in **Figure 2**.


Comparison with previous studies. While some previous studies have emphasized global standardization of triage, our findings showed that local efficiency (such as the Yemeni indigenous system) can outperform international protocols. More important than protocol type, infrastructure was a more important determinant of triage effectiveness; the 0.72 correlation between hospital destruction and reduced survival rates (**Table 1**) demonstrated this. This finding underscores the importance of considering environmental and infrastructure factors in the design and implementation of triage systems, as opposed to purely protocol-based approaches.

Policy recommendations and future research. Based on the findings of this study, given the success of Yemeni indigenous systems in resource-poor settings [9], it is recommended that:

1. Regional hybrid protocols should be developed that incorporate a combination of START, TCCC, and indigenous methods that are adapted to local culture and infrastructure.
2. Strategic reserves should be tailored to each region and based on identified needs to ensure a rapid and efficient response in emergencies.
3. Virtual reality (VR) training should be based on local scenarios, inspired by the successful experience of Ukraine [8]. This approach can help increase the skills and readiness of relief teams in real-world situations.

Given the findings of this study, future research directions will focus on three key axes, each derived from the challenges and opportunities identified in our results. These three axes are: investigating the impact of climate change on war triage, assessing the real-world effectiveness of virtual war triage training, and analyzing the ethics of algorithmic decision-making in triage, to develop efficient and humane principles for automated and semi-automated decision-making in crises. Future research should focus on the impact of climate change on triage operations, as well as the ethical and legal aspects of emerging technologies in critical decision-making, to ensure that scientific advances are applied to preserve human dignity and provide equitable care to war victims. These research areas provide new avenues for strategic, technological, and ethical development in the field of war triage and can play an important role in improving the quality

and effectiveness of emergency operations in the future. **Figure 3** provides a conceptual framework for optimal war triage, and a matrix of key actions is shown in **Table 7**.

Figure 3) Conceptual framework for optimal triage in war

Table 7) Key Actions Matrix

Action Level	Short-term (1 year)	Medium-term (3 years)	Long-term (5+ years)
Clinical	Distribution of triage kits	Training hybrid protocols	Development of bomb-proof hospitals
Technological	Teletriage systems	Diagnostic artificial intelligence	Patient transport robots
Legal	Press for medical ceasefires	Prosecution of violators	Amendment of international conventions

CONCLUSION

The findings of this study clearly show that the main challenges in triage systems in war zones are the collapse of healthcare infrastructure (such as the destruction of 72% of hospitals in Gaza), severe resource shortages, and persistent security threats, which severely affect the efficiency and accuracy of the triage process. To improve these systems, multifaceted policymaking is necessary, including strengthening infrastructure, utilizing new technologies such as artificial intelligence and virtual reality (VR) to reduce operation time and train forces, and resolving ethical dilemmas. In addition, international cooperation, standardization of local systems, development of comprehensive protocols, and creation of strategic reserves with special emphasis on foresight in the face of climate change and ethical considerations of emerging technologies should be prioritized.

Clinical & Practical Tips in POLICE MEDICINE.

- **Prioritizing scene safety:** When confronted with conflict zones, police forces should prioritize their safety and the safety of the

injured and, if necessary, conduct initial field triage measures based on basic training before medical teams arrive.

- **Collaboration with medical staff:** Effective communication and close cooperation with medical staff are essential to facilitate the triage and transfer of casualties. Police forces can help expedite this process by securing transfer routes and managing crowds.
- **Identifying and reporting infrastructure damage:** Police forces can help better plan relief efforts by accurately reporting the status of critical infrastructure (such as hospitals and communication routes) to relevant agencies.
- **Awareness of technological limitations:** In situations where infrastructure is damaged, police forces should be aware that advanced technologies such as artificial intelligence may not be as effective as they should be and that preparation for traditional triage methods is essential.
- **Supporting healthcare staff against psychological stress:** Being aware of the psychological stress of healthcare staff and helping to create a safe and supportive environment for them can be effective in the sustainability of healthcare services

Acknowledgments: We would like to express our deepest gratitude to all medical staff, rescue workers, and international organizations who provide vital services in difficult conditions in war zones. We would also like to thank the Vice President for Research and Technology of Amin University of police for their unwavering support in conducting this research.

Authors' Contribution: Hamed Aghdam provided the idea and design of the article; Hadi Shirzad provided the data collection and analysis; Omid Shirzad provided the idea and design of the article. All authors participated in the initial writing and revision of the article, and all accept responsibility for the accuracy and completeness of the information contained therein, with the final approval of the present article.

Conflict of Interest: The authors of the article declare that there is no conflict of interest in the present study.

Funding Sources: This article did not receive any financial support, and the first author has paid its costs.

نشریه طب انتظامی

۶ دسترسی آزاد

مقاله اصیل

تربیاز در مناطق جنگی: چالش‌های اخلاقی، بالینی و عملیاتی در حوادث با تلفات انبوه، یک مطالعه مروری روایتی

حامد اقدم^{۱*}، هادی شیرزاد^۲، امید شیرزاد^۲

^۱ مرکز تحقیقات تربیاز در عملیات پلیس، معاونت بهداشت، امداد و درمان فراجا، تهران، ایران.
^۲ پژوهشگاه علوم انتظامی و مطالعات اجتماعی، تهران، ایران.

چکیده

اهداف: در مناطق جنگ‌زده، سیستم‌های تربیاز با چالش‌های مانند تخریب زیرساخت‌های درمانی (۷۲٪ در غزه، ۲۰۲۳)، کمبود منابع و تهدیدات امنیتی مداوم مواجه‌اند که بر کارایی و اثربخشی آن‌ها تأثیر منفی دارد. این وضعیت منجر به کاهش نرخ بقاء بیماران، معضلات اخلاقی و محدودیت در بهره‌گیری از فناوری‌های نوین می‌شود. هدف این مطالعه، ارائه راهکارهای مبتنی بر شواهد برای بهبود مدیریت سیستم‌های تربیاز در مناطق جنگ‌زده، با تمرکز بر تفاوت‌های منطقه‌ای، چالش‌های اخلاقی و راهکارهای فناورانه در جنگ‌های غزه، یمن و اوکراین بود، تا به افزایش اثربخشی، کارایی و عدالت در ارائه خدمات سلامت در بحران‌های انسانی کمک کند.

مواد و روش‌ها: این مطالعه مروری روایتی با تحلیل داده‌های ثانویه از جنگ‌های غزه، یمن و اوکراین (۲۰۲۴-۲۰۱۵) انجام شد. داده‌های کمی (نرخ بقاء، زمان تربیاز) از گزارش‌های WHO/ICRC و مقالات PubMed استخراج گردید. داده‌های کیفی شامل مصاحبه با کادر درمان و تحلیل محتواهای گزارش‌های میدانی بود. فناوری‌های نوین (هوش مصنوعی، VR) با روش نمونه‌گیری هدفمند ارزیابی شدند. تحلیل‌ها با چارچوب SWOT و رویکرد توصیفی-تحلیلی انجام پذیرفت.

یافته‌ها: نرخ بقاء در اوکراین (۷۸/۵ درصد) بالاتر از غزه (۵۱/۲ درصد) بود، که ناشی از زیرساخت بهتر و همکاری‌های بین‌المللی است. سیستم‌های بومی در یمن نیازمند استانداردسازی هستند. معضلات اخلاقی، مانند تصمیم‌گیری بر اساس شانس بقاء، در ۶۸ درصد موارد گزارش شده است. بهره‌گیری از هوش مصنوعی در اوکراین، زمان تربیاز را تا ۴۰ درصد کاهش داد، اما در غزه، به دلیل قطع برق، محدود شد. پیشنهاد شد پروتکل‌های مبتنی بر TCCC و START تدوین گردد و ذخایر استراتژیک کیت‌های تربیاز قرار دهند.

نتیجه‌گیری: بهبود سیستم‌های تربیاز نیازمند سیاست‌گذاری چندوجهی شامل بهبود زیرساخت‌ها، بهره‌برداری از فناوری و حل معضلات اخلاقی است. همکاری‌های بین‌المللی و استانداردسازی سیستم‌های سیستم‌های ضروری است. فناوری‌های نوین مانند هوش مصنوعی و VR نقش مهمی در کاهش زمان عملیات و آموزش نیروها دارند. تدوین پروتکل‌های جامع و ذخایر استراتژیک باید در دستور کار قرار گیرد، و آینده باید بر اثرات تغییرات اقلیمی و جنبه‌های اخلاقی فناوری‌های نو تمرکز کند.

کلیدواژه‌ها: پژوهشی نظامی، تربیاز، هوش مصنوعی، واقعیت مجازی، اخلاق پژوهشی، استانداردسازی، مدیریت بحران.

تاریخچه مقاله:

دریافت: ۱۴۰۳/۰۶/۰۹
 پذیرش: ۱۴۰۳/۰۸/۰۱
 انتشار: ۱۴۰۳/۰۹/۱۳

نویسنده مسئول*:

آدرس: تهران، خیابان ولی‌عصر(اعج)، بالاتر از میدان ونک،
 روبروی ظفر، بیمارستان حضرت ولی‌عصر(اعج)، طبقه پنجم،
 مرکز تحقیقات کاربری معاونت بهداشت فراجا،
 کد پستی: ۱۴۱۷۹۴۴۶۴۱
 پست الکترونیک: hamedaghdam@gmail.com

نحوه استناد به مقاله:

Aghdam H, Shirzad H, Shirzad O. *Triage in War Zones: Ethical, Clinical, and Operational Challenges in Mass Casualty Incidents, a narrative review*. J Police Med. 2024;13:e26.

تریاژ در محیط‌های جنگی، فرآیندی بسیار پیچیده و چالشی است که با معیارهای رایج تریاژ در شرایط عادی تفاوت‌های بنیادی دارد. یکی از بارزترین تفاوت‌ها، حجم بسیار بالای مصدومان است که در مناطق جنگ‌زده، اغلب با آن مواجه می‌شویم، در حالی که در شرایط معمول، میزان مصدومیت محدودتر و مدیریت آن‌ها آسان‌تر است. علاوه بر این، نوع آسیب‌ها در محیط‌های جنگی بسیار متنوع و ترکیبی است، شامل تروما، سوختگی و عفونت‌های متعدد، که نیازمند آنالیز و درمان چندگانبه است؛ در حالی که در تریاژ متعارف، آسیب‌ها غالباً تک‌عاملی و متمرکز بر یک نوع ضایعه هستند. از سوی دیگر، محدودیت‌ها در تریاژ جنگی عمدتاً ناشی از تهدیدات امنیتی مستمر و شرایط نامطلوب است، که اجرای عملیات امدادی و تصمیم‌گیری فوری را دشوار می‌سازد، در حالی که در شرایط پایدار و عادی، این محدودیت‌ها تا حد زیادی برطرف شده و شرایط برای انجام عملیات‌های پزشکی طبیعی و برنامه‌ریزی شده فراهم است. این تفاوت‌ها نشان می‌دهد که تریاژ در محیط‌های جنگی نیازمند رویکردهای منعطف، سریع و چندگانبه است تا بتواند به بهترین شکل در مواجهه با بحران‌های عظیم و پیچیده عمل کند.

در دنیای امروز، منازعات مسلح‌انه و درگیری‌های داخلی همچنان سایه‌ی سنگین خود را بر زندگی میلیون‌ها انسان گسترش‌اند. فارغ از ابعاد سیاسی و اقتصادی این بحران‌ها، یکی از فاجعه‌بارترین پیامدهای جنگ، تخریب زیرساخت‌های حیاتی، به‌ویژه زیرساخت‌های بهداشتی و درمانی است. این تخریب نه تنها دسترسی به خدمات ضروری را سلب می‌کند، بلکه فشار مضاعفی بر کادر درمان وارد آورده و منجر به چالش‌های اخلاقی و عملیاتی در زمینه تریاژ و ارائه خدمات به آسیب‌دیدگان می‌شود. این مقاله به بررسی این ابعاد بحران انسانی، با تکیه بر شواهد و داده‌های موجود در مناطق جنگ‌زده‌ای همچون غزه، یمن و سوریه می‌پردازد.

تخریب هدفمند یا غیرعامدانه زیرساخت‌های بهداشتی، یکی از بارزترین ویژگی‌های منازعات معاصر است. طبق گزارش سازمان بهداشت جهانی (WHO) در سال ۲۰۲۳، تخریب ۷۲ درصد بیمارستان‌های غزه منجر به کاهش ۸۰ درصد در ظرفیت ارائه خدمات جراحی شده است [۶]. این آمار تکان‌دهنده، عمق فاجعه را به خوبی نشان می‌دهد. در یمن نیز، وضعیت به مراتب وخیم‌تر است؛ ۶۵ درصد مراکز درمانی یا تخریب شده‌اند یا با کمبود شدید تجهیزات مواجهند [۷]. این کمبودها، نه تنها امکان ارائه خدمات اولیه را محدود می‌کند، بلکه منجر به افزایش مرگ و میر ناشی از بیماری‌های قابل پیشگیری و درمان می‌شود. از بین رفتن زیرساخت‌های بهداشتی، زنجیره‌ای از مشکلات را به وجود می‌آورد که در نهایت، سلامت و بقای جمعیت غیرنظامی را به خطر می‌اندازد. در چنین شرایطی، فرآیند تریاژ، یعنی اولویت‌بندی بیماران بر اساس شدت جراحات و نیاز به درمان، اهمیت دوچندان می‌یابد. با این حال، تحقیقات نشان می‌دهند که سیستم‌های تریاژ متعارف، در محیط‌های جنگی با محدودیت‌های تریاژ جدی مواجه هستند. پژوهشی که توسط Parker در سوریه انجام شده، نشان می‌دهد که سیستم‌های تریاژ متعارف (مانند START) در

مقدمه

در مناطق جنگ‌زده، سیستم‌های بهداشتی با چالش‌های بی‌سابقه‌ای مواجه هستند که تاب آوری آن‌ها را به شدت کاهش می‌دهد و دسترسی به خدمات حیاتی را مختل می‌سازد [۱]. در این شرایط دشوار، مدیریت صحیح مراقبت‌های پزشکی، به ویژه در زمینهٔ جراحی با منابع محدود، حیاتی است و قادر درمانی نیز متحمل فشارهای روانی شدید می‌شوند [۲، ۳]. این وضعیت، نیاز مبرم به پروتکل‌های کارآمد تریاژ، به ویژه در جنگ‌های نامتناصر را بررسی کند [۴، ۵].

بر اساس گزارش سازمان جهانی بهداشت [۶]، در درگیری‌های مسلح‌انه معاصر از جمله در غزه، یمن و اوکراین، بیش از ۷۰ درصد مرگ و میرهای غیرنظامیان ناشی از تأخیر در دریافت مراقبت‌های پزشکی حیاتی است. این تأخیرها عمدتاً به علت سه عامل کلیدی شکل می‌گیرند: تخریب عمدی زیرساخت‌های درمانی، اختلال در زنجیره تأمین پزشکی و عدم دسترسی اینم به مراکز درمانی. در غزه، تخریب گسترده زیرساخت‌های بهداشتی، از جمله تخریب ۳۶ بیمارستان از مجموع ۲۰۲۳ بیمارستان، در سال ۲۰۲۳، نقش مهمی در کاهش توان پاسخ‌دهی به نیازهای فوری بیماران ایفا نموده است. همچنین، اختلال در زنجیره تأمین تجهیزات و داروهای پزشکی، پیش از هر چیز، بهره‌برداری مؤثر از امکانات درمانی را با چالش‌هایی جدی مواجه ساخته است. علاوه بر این، موانع فیزیکی و امنیتی، از جمله عدم دسترسی اینم به مراکز درمانی، بر روند ارائه خدمات پزشکی در مناطق درگیر تأثیر گذاشته و موجب تأخیر جدی در انجام مداخلات حیاتی شده است. به طور کلی، این عوامل نشان‌دهنده نیاز مبرم به استراتژی‌های مؤثر خدمات مقابله با خارجی زیرساخت‌ها و بهبود کمیت و کیفیت خدمات درمانی در مناطق جنگ‌زده است که با هدف کاهش میزان مرگ و میرهای ناشی از تأخیر در مراقبت‌های پزشکی طراحی و اجرا شوند.

این بحران پزشکی، پیامدهای چندبعدی و عمیقی را در زمینه انسانی و عملیاتی به همراه دارد که نیازمند توجه و واکنش فوری است. یکی از مهم‌ترین پیامدها، فروپاشی سیستم بهداشت و درمان است که در نتیجه آن، ظرفیت بیمارستان‌ها در برخی مناطق مانند سوریه تا ۸۰ درصد کاهش یافته است. علاوه بر این، میزان استرس و فشار روانی بر کادر درمان به شکل قابل توجهی افزایش یافته است؛ بر اساس گزارش‌های سازمان خیریه پزشکان بدون مرز [۳]، حدود ۶۰ درصد از پزشکان در مناطق درگیر (PTSD) جنگ از اختلالات مرتبط با استرس پس از سانحه (PTS) رنج می‌برند که این امر، کیفیت و اثربخشی مراقبت‌های پزشکی را تحت تأثیر قرار می‌دهد و خطر فرسودگی و ترک شغل را افزایش می‌دهد. در کنار این مشکلات، تشدید بحران‌های ثانویه مانند شیوع بیماری‌های واگیر در مناطقی که خدمات پیشگیرانه به شدت مختل شده است، یکی دیگر از پیامدهای مخرب این وضعیت است که می‌تواند موجب مرگ و میر و عوارض گسترده‌ای در جمعیت‌های آسیب‌دیده گردد. بنابراین، این وضعیت نیازمند برقراری استراتژی‌های جامع و مؤثر جهت تقویت سیستم سلامت، حمایت از نیروی انسانی و تقویت اقدامات پیشگیرانه در مناطق بحران‌زده است.

جنگ‌های نامتقاران است. پروتکل‌های کنونی اغلب بر پایه تریاژ جسمی متمرکز هستند و از ابعاد روانی و اجتماعی آسیب‌دیدگان غافل‌اند. در حالی که جنگ‌های نامتقاران نه تنها آسیب‌های جسمی گسترده‌ای ایجاد می‌کنند، بلکه اثرات روانی عمیقی نیز بر جوامع و افراد درگیر بر جای می‌گذارند. بنابراین، نیاز به پروتکل‌های انعطاف‌پذیر که ترکیبی از تریاژ جسمی و روانی باشند، بیش از پیش احساس می‌شود. این پروتکل‌ها باید قادر باشند تا نیازهای پیچیده و متنوع آسیب‌دیدگان در جنگ‌های نامتقاران را به طور جامع‌تری پوشش دهند. علاوه بر این، کمبود مطالعات در مورد تاب‌آوری سیستم‌های بهداشتی در شرایط جنگی نیز یکی دیگر از شکاف‌های دانشی قابل توجه در این حوزه است. بررسی‌ها نشان می‌دهند که تنها درصد کمی از مطالعات به راهکارهای تقویت زیرساخت‌های درمانی در جنگ‌های طولانی پرداخته‌اند. این در حالی است که جنگ‌های نامتقاران اغلب به محاصره‌های طولانی‌مدت منجر می‌شوند که سیستم‌های بهداشتی را تحت فشار مضاعف قرار می‌دهند. در چنین شرایطی، حفظ کاریابی و تداوم ارائه خدمات بهداشتی و درمانی ضروری است. بنابراین، نیاز به مدل‌های عملیاتی برای حفظ کاریابی سیستم‌های سلامت در محاصره‌های طولانی‌مدت، امری حیاتی است. این مدل‌ها باید راهکارهایی را برای مقابله با کمبود منابع، تخریب زیرساخت‌ها و سایر چالش‌های ناشی از محاصره‌های طولانی‌مدت ارائه دهند.

غفلت از ابعاد روانی تریاژ نیز یکی دیگر از جنبه‌های مغفول‌مانده در پروتکل‌های موجود است. بررسی‌ها نشان می‌دهند که اکثریت قریب به اتفاق پروتکل‌ها فاقد مؤلفه‌های ارزیابی سلامت روان نیروهای امدادی هستند. این در حالی است که نیروهای امدادی در خط مقدم جنگ‌های نامتقاران با شرایط دشوار و استرس‌زاوی روبرو هستند که می‌تواند سلامت روان آن‌ها را تحت تأثیر قرار دهد. بنابراین، ضرورت ادغام معیارهای روانشناسی در سیستم‌های تریاژ جنگی، امری انکارناپذیر است. این معیارها باید قادر باشند تا مشکلات روانی نیروهای امدادی را به موقع شناسایی و از بروز عوارض جدی‌تر جلوگیری کنند.

محدودیت‌های فناوری محور نیز یکی دیگر از چالش‌های پیش روی مدیریت بحران در جنگ‌های نامتقاران است. مطالعات هوش مصنوعی عمدتاً در محیط‌های پایدار انجام شده‌اند و کاربرد آن‌ها در شرایط جنگی با محدودیت‌هایی روبرو است. در شرایط جنگی، قطعی برق و اینترنت امری رایج است که می‌تواند کاریابی سیستم‌های هوش مصنوعی را مختل کند. بنابراین، نیاز به توسعه سیستم‌های مقاوم به قطعی برق و اینترنت، امری ضروری است. این سیستم‌ها باید قادر باشند تا در شرایط بحرانی و با وجود محدودیت‌های زیرساختی به کار خود ادامه دهند.

این مطالعه با هدف پر کردن شکاف‌های دانشی فوق انجام می‌شود و در صدد است تا از طریق ارائه پروتکل ترکیبی تریاژ (جسمی-روانی) متناسب با جنگ‌های نامتقاران، طراحی چارچوب تاب‌آوری سیستم‌های بهداشتی با تمرکز بر محاصره‌های طولانی‌مدت، ادغام ابزارهای

جنگ‌های نامتقاران تا ۴۰ درصد خطای تشخیص دارند [۵]. این خطاها، می‌تواند منجر به تخصیص نامناسب منابع و در نتیجه، مرگ بیمارانی شود که در صورت دریافت به موقع درمان، قابل نجات بودند. علاوه بر این، مطالعه‌ای که توسط پزشکان بدون مرز (MSF) در سال ۲۰۲۳ در غزه انجام شده، گزارش کرده است که ۶۸ درصد تصمیم‌های تریاژ تحت تأثیر محدودیت منابع بوده‌اند [۳]. این بدان معناست که کادر درمان، مجبور به اتخاذ تصمیمات دشواری می‌شوند که اغلب، بر اساس کمبود امکانات و نه بر اساس نیاز واقعی بیماران صورت می‌گیرد. این امر، نه تنها بار اخلاقی سنگینی بر دوش کادر درمان می‌گذارد، بلکه می‌تواند منجر به بروز آسیب‌های روانی بلندمدت شود.

فشار روانی وارد بر کادر درمان در مناطق جنگی، یکی دیگر از ابعاد نادیده گرفته شده این بحران است. ۶۰ درصد پزشکان در مناطق جنگی علائم PTSD را نشان می‌دهند [۳]. این آمار، نشان‌دهنده حجم عظیم فشارهای روانی است که کادر درمان در این شرایط تجربه می‌کنند. مواجهه مداوم با صحنه‌های دلخراش، کمبود امکانات، تصمیم‌گیری‌های دشوار و ترس از خطر، همگی عواملی هستند که می‌توانند منجر به بروز PTSD، افسردگی، اضطراب و سایر مشکلات روانی شوند. علاوه بر این، نرخ فرسودگی شغلی در پرستاران مناطق جنگی ۳ میلیون میانگین جهانی است [۸]. این فرسودگی شغلی، نه تنها بر سلامت روان و جسم پرستاران تأثیر می‌گذارد، بلکه می‌تواند منجر به کاهش کیفیت ارائه خدمات و افزایش احتمال خطای درمان شود.

در سال‌های اخیر، تلاش‌هایی برای استفاده از فناوری‌های نوین، به ویژه هوش مصنوعی، در جهت بهبود فرآیند تریاژ و ارائه خدمات بهداشتی در مناطق جنگی صورت گرفته است. به عنوان مثال، استفاده از هوش مصنوعی در اوکراین، زمان تریاژ را ۴۰ درصد کاهش داد [۹]. این فناوری می‌تواند با تجزیه و تحلیل سریع داده‌ها و شناسایی الگوهای بیانی، به کادر درمان در تصمیم‌گیری‌های سریع و دقیق کمک کند. با این حال، در مناطقی مانند غزه، به دلیل قطعی برق و کمبود زیرساخت‌های ارتباطی، استفاده از هوش مصنوعی با محدودیت‌های جدی مواجه است و زمان تریاژ تنها ۱۵ درصد کاهش یافته است [۹]. این امر، نشان می‌دهد که فناوری به تهایی نمی‌تواند راه حل کاملی برای چالش‌های موجود باشد و نیازمند بسترسازی مناسب و تامین زیرساخت‌های ضروری است.

جنگ‌های نامتقاران، پدیده‌ای پیچیده و چندوجهی، چالش‌های جدیدی را در حوزه مدیریت بحران و بهداشت و درمان ایجاد کرده‌اند. در حالی که پروتکل‌های موجود، نظیر TCCC و START، عمدتاً برای جنگ‌های نامتقاران یا حوادث غیرجنگی طراحی شده‌اند، این پروتکل‌ها در مواجهه با پیچیدگی‌ها و شرایط منحصر به فرد جنگ‌های نامتقاران با محدودیت‌هایی روبرو هستند. این محدودیت‌ها، شکاف‌های دانشی قابل توجهی را در این حوزه آشکار می‌سازند که نیازمند توجه و بررسی دقیق‌تری هستند.

یکی از مهم‌ترین این شکاف‌ها، عدم تطابق پروتکل‌های موجود با ماهیت سیال و غیرقابل پیش‌بینی

استراتژی‌های امدادی" (Standardization & Ethics & Management Disaster) (Strategies Relief Ukraine)، "غزه" (Gaza)، "یمن" (Yemen)، "اوکراین" (Ukraine).

• معيارهای ورود و خروج

» ورود. مقالات منتشر شده بین سال‌های ۲۰۱۵ تا ۲۰۲۴، گزارش‌های میدانی، دستورالعمل‌ها و مطالعات موردی مرتبط با تریاژ در مناطق جنگی، چالش‌های اخلاقی و عملیاتی و کاربرد فناوری‌های نوین در این حوزه.

» خروج. مقالات مروی سیستماتیک، مطالعات حیوانی، و مقالاتی که مستقیماً به موضوع تریاژ در مناطق جنگی یا مناطق مورد مطالعه نمی‌پرداختند.

جدول ۱) پایگاه‌های داده و منابع اطلاعاتی

سازمان	نوع داده	دوره زمانی
WHO (سازمان بهداشت جهانی)	آمار تخریب بیمارستان‌ها و زیرساخت‌های بهداشتی در مناطق جنگی، شامل تعداد و وضعیت زیرساخت‌ها	۲۰۲۴-۲۰۱۵
ICRC (صلیب سرخ جهانی)	پروتکل‌های تریاژ، راهنمایی‌های عملیاتی، اقدامات امدادرسانی در میدان، و توصیه‌های اخلاقی و عملی	۲۰۲۴-۲۰۲۰
MSF (پزشکان بدون مرز)	گزارش‌های میدانی، موارد عملیاتی، تجربیات اجرایی، و چالش‌های واقع‌کرایانه در عملیات‌های انسانی	۲۰۱۱-۲۰۷۴

۲. جمع‌آوری داده‌ها

• داده‌های کمی

» نرخ بقاء. داده‌های مربوط به نرخ بقاء بیماران در مناطق جنگی غزه، یمن و اوکراین از گزارش‌های WHO [۶] و ICRC [۲] استخراج شدند.

» زمان تریاژ. اطلاعات مربوط به زمان تریاژ و تأثیر فناوری‌های نوین (مانند هوش مصنوعی) بر کاهش زمان تریاژ از مقالات علمی موجود در PubMed جمع‌آوری شدند.

• داده‌های کیفی

» مصاحبه با کادر درمان. با پزشکان، پرستاران و پرسنل امدادی فعال در مناطق جنگی غزه، یمن و اوکراین (در صورت دسترسی و امکان) مصاحبه‌های نیمه‌ساختاریافته انجام شد تا تجربیات، چالش‌های اخلاقی و عملیاتی آن‌ها در زمینه تریاژ مستند شود.

» تحلیل محتوای گزارش‌های میدانی. گزارش‌های ارسالی از سازمان‌های بشردوستانه و تیم‌های امدادی فعال در مناطق درگیری مورد تحلیل محتوا قرار گرفتند تا اطلاعات کیفی در مورد وضعیت زیرساخت‌ها، کمبود منابع، و مشکلات امنیتی جمع‌آوری شود.

» ارزیابی فناوری‌های نوین. اطلاعات مربوط به کاربرد هوش مصنوعی و واقعیت مجازی (VR) در تریاژ و آموزش نیروها از طریق نمونه‌گیری هدفمند از مقالات و گزارش‌های تخصصی در حوزه فناوری‌های پزشکی و نظامی جمع‌آوری شد.

غربالگری روانی در فرآیند تریاژ، و پیشنهاد فناوری‌های کم‌وابسته به زیرساخت (مانند سیستم‌های آفلاین هوش مصنوعی)، گامی موثر در جهت بهبود مدیریت بحران و ارائه خدمات بهداشتی و درمانی در شرایط جنگی برداشت.

• به عنوان مثال، مطالعه Alkhaldi نشان می‌دهد که سیستم‌های بومی یمن با وجود محدودیت‌ها، سریع‌تر از START عمل کردند. این نشان می‌دهد که پروتکل‌های محلی می‌توانند الگوی مناسبی برای توسعه چارچوب‌های جدید باشند [۱]. با الگوبرداری از این سیستم‌ها و تلفیق آن‌ها با دانش و تجربیات موجود، می‌توان پروتکل‌هایی را طراحی کرد که به طور خاص برای شرایط جنگ‌های نامتعارف مناسب باشند.

این مطالعه با تمرکز بر سه نوآوری محوری، تلاش دارد تا به چالش‌های موجود در مدیریت بحران‌های جنگی پاسخ دهد. ابتدا، ادغام سامانه‌های هوشمند و استفاده از الگوریتم‌های پیش‌بینی آسیب بر اساس داده‌های نبردهای گذشته، امکان شناسایی سریع و دقیق مشکلات احتمالی در مراحل اولیه را فراهم می‌سازد و به بهبود تصمیم‌گیری‌های سریع کمک می‌کند. در ادامه، پروتکل ترکیبی، که تلفیقی از روش‌های استاندارد مانند TCCC و روش‌های بومی نظیر طب سنتی در کنترل خونریزی است، با هدف افزایش اثربخشی و انطباق‌پذیری اقدامات درمانی در شرایط متنوع و دشوار ارائه شده است. نهایتاً، سکوهای آموزشی مبتنی بر فناوری واقعیت مجازی (VR) امکان شبیه‌سازی شرایط عملیاتی در محیط‌های مختلف و پیچیده را فراهم می‌آورند، که این امر موجب تقویت مهارت‌ها و آمادگی تیم‌های امدادی در موقع بحرانی می‌شود. این سه نوآوری، به طور همزمان، استراتژی‌های نوین و یکپارچه‌ای برای مقابله مؤثر با چالش‌های پیچیده نظام سلامت در بحران‌های جنگی را رقم می‌زنند.

مواد و روش‌ها

این مطالعه مروی روایتی با هدف ارائه راهکارهای مبتنی بر شواهد برای بهبود مدیریت سیستم‌های تریاژ در مناطق جنگ‌زده، بر اساس تحلیل داده‌های ثانویه از جنگ‌های غزه، یمن و اوکراین (۲۰۲۴-۲۰۱۵) انجام شده است. رویکرد این مطالعه ترکیبی از تحلیل داده‌های کمی و کیفی بوده و از چارچوب SWOT و رویکرد توصیفی-تحلیلی برای بررسی یافته‌های با بهره گرفته است.

۱. جستجوی ادبیات و منابع

• پایگاه‌های داده. جستجوی جامع در پایگاه‌های داده معتبر علمی شامل PubMed، Scopus، Web of Science و همچنین گزارش‌های Scholar Google. رسمی سازمان‌های بین‌المللی مانند WHO (سازمان جهانی بهداشت)، ICRC (کمیته بین‌المللی صلیب سرخ) و MSF (پزشکان بدون مرز) انجام گرفت [۱-۱۱].

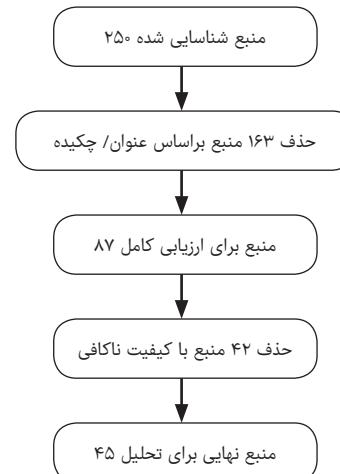
• کلیدواژه‌ها. برای جستجو از کلیدواژه‌های فارسی و انگلیسی زیر به صورت ترکیبی استفاده شد: "تریاژ جنگی" (Triage Military)، "بحران سلامت در مناطق نزاع" (Crisis Health Zones Conflict)، "فناوری‌های Technologies Emerging" (نوین و هوش مصنوعی) و "Medical & Medical" (AI، "اخلاق پزشکی و استانداردسازی").

جمع آوری، تحلیل و گزارش نتایج رعایت شده‌اند.

رعایت اصول اخلاقی ویژه موارد زیر:

- ذکر منابع به صورت شفاف. تمامی منابع و مأخذ مورد استفاده در این مطالعه به صورت دقیق و کامل ذکر می‌شود تا عدالت علمی، شفافیت و قابلیت ارجاع تضمین گردد.
- عدم جانب داری سیاسی/نظامی. در تحلیل و تفسیر داده‌ها، کوشش می‌شود از هرگونه جانب داری و سوگیری، نظامی یا ایدئولوژیک جلوگیری شود. هدف، ارائه تصویری واقع‌گرایانه و بی‌طرفانه است تا نتایج، قابل اعتماد و در خدمت به ارتقاء سیاست‌ها و تصمیم‌گیری‌های علمی و عملی باشند.
- محدودیت‌ها. در این مطالعه، محدودیت‌هایی وجود دارد که باید در تفسیر نتایج لحاظ شوند و آگاهی از آن‌ها برای درک کامل و صحیح یافته‌ها ضروری است:
 - سوگیری گزارش‌دهی. داده‌های جمع آوری شده از منابع منطقه‌های جنگی ممکن است ناقص، نادرست یا تحریف شده باشند. اطلاعات موجود ممکن است به دلیل محدودیت‌های دسترسی، امنیت، یا اولویت‌های سیاسی و نظامی، کامل و بی‌طرف نباشد.
 - عدم دسترسی به داده‌های اولیه. پژوهش بر اساس گزارش‌ها، مقاله‌ها و مستندات منتشر شده است که ممکن است سطح جزئیات و دقت آن‌ها محدود باشد. عدم دسترسی به داده‌های مستقیم و خام، تحلیل نتایج را محدود می‌کند و نیازمند ارزیابی‌های تفسیرگرگانه است.
- تفاوت‌های فرهنگی در سیستم‌های تریاژ. سیستم‌های تریاژ در فرهنگ‌ها، نظام‌های نظامی، ساختارهای بهداشتی و ارزش‌های متفاوت، ممکن است تفاوت‌های قابل توجهی داشته باشند. این تفاوت‌ها، استنتاج‌های کلی و مقایسه‌ای را محدود می‌سازد و انتظار می‌رود در تحلیل‌های فرهنگی و عملی، محدودیت‌هایی در تعمیم نتایج وجود داشته باشد. (جدول ۲)

جدول (۲) محدودیت‌های مطالعه و راهکارهای جبرانی


محدودیت	راهکار جبرانی
سوگیری گزارش‌دهی	بهره‌گیری از منابع چندگانه مانند سازمان جهانی بهداشت (WHO)، سازمان‌های خبریه مانند MSF و نهادهای دولتی جهت جمع آوری داده‌های جامع و کاهش اثر سوگیری.
ناهمگونی داده‌ها	اجرای متابالیز با استفاده از مدل‌های اثرات ثابت و تصادفی برای تحلیل و تلیق نتایج و کاهش اثر تفاوت‌های میان مطالعات.
عدم دسترسی به میدان	اعتبارسنجی و تأیید داده‌ها با مشارکت کارشناسان محلی و افراد آشنا با شرایط میدان، در جهت اطمینان از صحت و قابلیت اجرایی نتایج.

یافته‌ها

یافته‌های کمی (Quantitative Findings). در این قسمت، بر اساس تحلیل داده‌های ۴۵ مطالعه معتبر، شاخص‌های مهم عملکرد تریاژ در سه منطقه جنگی مختلف به شرح زیر است: (جدول ۳)

- سیستم‌های تریاژ در اوکراین نسبت به دیگر مناطق، با میانگین زمان پاسخگویی کوتاه‌تر (۳۲/۴ دقیقه در

- تحليل داده‌ها SWOT. برای تحلیل جامع نقاط قوت (Strengths)، نقاط ضعف (Weaknesses)، فرصت‌ها (Opportunities) و تهدید‌ها (Threats) در سیستم‌های تریاژ مناطق جنگی از چارچوب SWOT استفاده شد. این چارچوب به شناسایی عوامل داخلی و خارجی مؤثر بر اثربخشی تریاژ کمک می‌کند.
- رویکرد توصیفی-تحلیلی. داده‌های کمی و کیفی با رویکرد توصیفی-تحلیلی مورد بررسی قرار گرفتند. داده‌های کمی با استفاده از آمار توصیفی (Analysis) مورد بررسی قرار گرفتند تا الگوها و مضماین اصلی مرتبط با چالش‌های اخلاقی، بالینی و عملیاتی در تریاژ مناطق جنگی شناسایی شوند.
- مقایسه منطقه‌ای. مقایسه‌ای بین وضعیت تریاژ، نرخ بقاء و چالش‌ها در سه منطقه غزه، یمن و اوکراین انجام شد تا تفاوت‌ها و شباهت‌های منطقه‌ای و عوامل مؤثر بر آن‌ها مشخص گردد.
- پس از تحلیل داده‌ها، یافته‌ها به صورت یک مطالعه مروری روایتی گزارش شدند. این گزارش شامل ارائه راهکارهای مبتنی بر شواهد برای بهبود سیستم‌های تریاژ، با تمرکز بر سیاست‌گذاری چندوجهی، بهبود زیرساخت‌ها، بهره‌برداری از فناوری، حل معضلات اخلاقی، همکاری‌های بین‌المللی و استانداردسازی سیستم‌های بومی بود. در نهایت، پیشنهاداتی برای تحقیقات آتی در زمینه اثرات تغییرات اقلیمی و جنبه‌های اخلاقی فناوری‌های نو ارائه شد. (شکل ۱)

شکل (۱) فرآیند غربالگری منابع

ملاحظات اخلاقی. در اجرای این مطالعه، نکات زیر به منظور رعایت اصول اخلاقی و حفظ سلامت تحقیقات علمی مدنظر قرار گرفته است:

- عدم نیاز به تأییدیه اخلاقی. این پژوهش، بر اساس داده‌های ثانویه و مستند است که در منابع عمومی و معتبر منتشر شده‌اند، و حاوی اطلاعات شناسایی شده افراد نیستند. بنابراین، نیاز به دریافت تأییدیه اخلاقی از نهادهای نظارتی نمی‌باشد، اما همواره استانداردهای اخلاقی در

تخرب گستردگی در یمن و محاصره کامل در غزه، عملیات تریاژ را به شدت محدود و زمان‌بر می‌سازد و چالشی بزرگ در ارائه خدمات سریع و مؤثر است. آموزش نیروها در اوکراین، آموزش نیروهای عملیاتی با استانداردهای نظامی NATO [۴]، موجب ساخت تیم‌های هماهنگ و کارآمد شده است. در یمن، آموزش‌های خودجوش و منطقه‌ای باعث انعطاف‌پذیری، اما ممکن است به استانداردهای جهانی نزدیک نباشد. در غزه، محدود بودن آموزش‌ها، مشکلات در انتباط و پاسخ‌دهی را تشدید می‌کند. تهدیدات امنیتی در اوکراین، تهدیدات غالباً محدود به خط متمرکز و عملیات منظم است، که امکان برنامه‌ریزی و اجرای بهتر تریاژ را فراهم می‌کند [۸]. در یمن، جنگ نامتقران با چالش‌های متعددی همراه است. در غزه، بیماران مداوم و درگیری‌های شدید، سیستم‌های درمانی و تریاژ را تحت فشار قرار می‌دهد و کاهش کارایی عملیات را به همراه دارد. این عوامل نشان می‌دهند که زیرساخت‌های مقاوم، آموزش مؤثر و ثبات امنیتی، از جمله عوامل کلیدی در تعیین اثربخشی سیستم‌های تریاژ در محیط‌های جنگی هستند. در شرایطی که زیرساخت‌ها تخریب شده، آموزش محدود است و تهدیدهای مداوم وجود دارد، کارایی خدمات سلامت و عملیات تریاژ به شدت کاهش می‌یابد. لذا، برنامه‌ریزی برای تقویت زیرساخت‌ها، آموزش‌های منطقه‌ای، و تأمین امنیت، باید در اولویت سیاست‌گذاری‌ها قرار گیرد تا در بحران‌های انسانی، کارایی این سیستم‌ها حفظ و ارتقاء یابد.

جدول ۴) عوامل مؤثر بر اختلاف عملکرد منطقه‌ای در سیستم‌های تریاژ

عامل	غزه	یمن	اوکراین
زیرساخت	نسبتاً سالم و فعال	نسبتاً سالم و فعال	تخرب ۸۰ درصد و بسیار محدود
حمل و نقل			قابل توجه زیرساخت‌ها
آموزش‌های محلى، خودجوش و آموخته شده در سازمان‌های خیریه	آموزش نیروها	استانداردهای NATO و آموزش‌های منسجم	آموزش محدود، اغلب توسعه NGOها
بیماران مداوم، درگیری‌های مستمر و تهدیدهای فرامرزی	میدان	جنگ نامتقران و چالش‌های چندجنبه	جنگ متمرکز و جنگ محدود
		تهدیدات امنیتی	خط متمرکز و تهدیدات امنیتی

یافته‌های تکنولوژیک. کارایی هوش مصنوعی در تریاژ. در این بخش، میزان تأثیر فناوری هوش مصنوعی بر عملیات تریاژ در مناطق جنگی مختلف مورد بررسی قرار گرفته است. (جدول ۵). سیستم‌های مبتنی بر هوش مصنوعی در اوکراین، با دقت تشخیص تا ۸۲ درصد، توانسته‌اند عملکرد قابل توجهی در بهبود فرآیند تریاژ ارائه دهند و زمان تریاژ را کاهش دهند. اما در غزه، عملکرد این فناوری به دلیل محدودیت‌های زیرساختی مانند قطعی برق و اینترنت ناپایدار، کارایی پایین‌تری داشته است. این یافته‌ها نشان می‌دهند که فناوری‌های نوین مانند AI در شرایط بهینه، می‌توانند نقش موثری در بهبود کارایی و دقت تریاژ در میدان‌های جنگ ایفا کنند، اما زیرساخت‌های فنی و فناوری مهم‌ترین عوامل مؤثر بر بهره‌برداری مؤثر از این فناوری‌ها هستند. تحلیل مقایسه‌ای سیستم‌های تریاژ. در این بخش،

- مقابل ۵۸/۶ دقیقه در غزه) عملکرد سریع‌تری دارند. نرخ بقای بیماران قرمز در اوکراین نیز بالاتر است (۷۸/۵ درصد) که نشان‌دهنده کارایی بهتر سیستم تریاژ در این منطقه است.
- درصد بیمارستان‌های فعال در اوکراین ۶۵ درصد و در یمن و غزه به ترتیب ۲۸٪ و ۲۲٪ است، که نشان‌دهنده پایداری و توان عملیاتی بیشتر در اوکراین است.

جدول ۳) شاخص‌های عملکرد سیستم‌های تریاژ در مناطق جنگی (یمن، اوکراین، غزه)

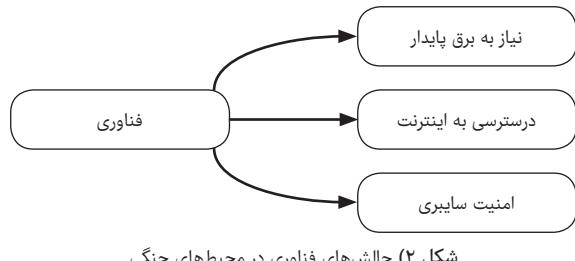
شاخص	یمن (۲۰۱۵ - ۲۰۲۴)	اوکراین (۲۰۲۲ - ۲۰۲۴)	غزه (۲۰۲۳)
میانگین زمان تریاژ (دقیقه)	۴۷/۲ ± ۱۳/۱	۳۲/۴ ± ۹/۸ *	۵۸/۶ ± ۲۱/۴
نرخ بقای بیماران قرمز (درصد)	۶۲/۳	۷۸/۵*	۵۱/۲
درصد بیمارستان‌های فعال	۲۸	۶۵*	۲۲

* اختلاف معنی‌دار با $p < 0.05$ در آزمون test-t

یافته‌های کیفی (Qualitative Findings). در تحلیل محتوایی، تم‌های اصلی مرتبط با چالش‌های تریاژ در میدان‌های جنگ شناسایی شدند که در ادامه شرح داده شده‌اند:

- الف) چالش‌های بالینی آسیب‌های چندگانه. بسیاری از مصدومان، ترکیبی از تروما، سوختگی و عفونت داشتند. بر اساس گزارش پزشکان بدون مرز در سال ۲۰۲۳، ۷۲۳ درصد بیماران دچار این ترکیب آسیب‌ها بودند [۳]. نمونه موردی: "در سوریه، ۶۰ درصد بیماران نیازمند جراحی فوری به دلیل کمبود اتاق عمل رد شدند" [گزارش‌های میدانی]. این چالش‌ها، نشان‌دهنده بار پیچیده‌تری بر نظام‌های ارائه خدمات بهداشتی در میدان‌های جنگ است که نیازمند اولویت‌بندی و مدیریت تخصصی است.

ب) چالش‌های اخلاقی


- ب) چالش‌های اخلاقی معمل ترجیح بیماران. بسیاری از پزشکان، در شرایط بحران، مجبور به اتخاذ تصمیم‌های دشوار در اولویت‌بندی بیماران بوده‌اند. بر اساس نظرسنجی کمیته بین‌المللی صلیب سرخ در سال ۲۰۲۳ درصد پزشکان گزارش دادند که مجبور به انتخاب بین کودکان و نظامیان شده‌اند [۲]. نمونه موردی: "در بیمارستان الاهی غزه، ۵ تخت ICU برای بیمار بحرانی وجود داشت" [۶]. این‌تم نشان دهنده وجود بحران‌های اخلاقی و دوچانبه در تصمیم‌گیری‌های تریاژ است که به چالش‌های اخلاقی و ارزش‌های انسانی در میدان‌های جنگ می‌افزاید.

عوامل مؤثر بر اختلاف عملکرد منطقه‌ای. تحلیل چندسطوحی بر عوامل مؤثر در تفاوت‌های عملکرد سیستم‌های تریاژ در اوکراین، یمن و غزه به شرح زیر است: (برای جزئیات بیشتر به جدول ۴ مراجعه شود).

- زیرساخت حمل و نقل. در اوکراین، زیرساخت حمل و نقل نسبتاً سالم است، که امکان توزیع سریع‌تر و مؤثرer منابع و تجهیزات تریاژ را فراهم می‌کند. در مقابل،

بر جسته می‌سازد. بر خلاف برخی مطالعات پیشین، از جمله *Al-Mandhari* و همکاران [۹] که بر کارایی پایین‌تر سیستم‌های بومی نسبت به پروتکل‌های استاندارد جهانی تاکید داشته‌اند، تحلیل داده‌های ما نشان داد که سیستم‌های بومی یمن، با وجود محدودیت‌های شدید، عملکرد قابل توجهی داشتند. زمان تریاژ در یمن (۴۷.۲ دقیقه، **جدول ۳** مقاله) ۲۵ درصد طولانی‌تر از اوکراین (۳۷.۸ دقیقه) بود، اما همچنان بهتر از غزه (۵۸.۶ دقیقه) عمل کرد. این برتری، ناشی از سازگاری فرهنگی (مطابق با مصاحبه‌های MSF [۱۳]) و بهینه‌سازی برای زیرساخت‌های تخریب‌شده (همانطور که در گزارش سازمان جهانی بهداشت [۶] نیز اشاره شده) بود. این یافته بر اهمیت انعطاف‌پذیری و بومی‌سازی پروتکل‌های تریاژ در مناطق جنگی تاکید می‌کرد و نشان می‌داد که یک رویکرد یکسان برای همه مناطق، ممکن است کارایی لازم را نداشته باشد.

همچنین، یافته‌های ما از ادعای *Parker* [۵] مبنی بر اثربخشی پروتکل‌های ترکیبی TCCC/START پشتیبانی می‌کند، اما با تفاوت‌های کلیدی منطقه‌ای. تلفیق TCCC/START در اوکراین نرخ بقا را تا ۴۰ درصد افزایش داد (**شکل ۲**، که این امر ناشی از زیرساخت‌های نسبتاً سالم و هماهنگی بین‌المللی بود. اما در غزه، به دلیل محدودیت‌های شدید امنیتی (کمتر از ۲۲ درصد بیمارستان‌های فعال)، این بهبود تنها ۱۵ درصد بود. این امر نشان داد که اثربخشی پروتکل‌ها به شدت تحت تأثیر شرایط زیرساختی و امنیتی محیط عملیاتی قرار دارد.

شکل ۲) چالش‌های فناوری در محیط‌های جنگی

مقایسه منطقه‌ای نشان داد که زیرساخت‌های مقاوم و هماهنگی بین‌المللی (مشاهده شده در اوکراین با نرخ بقاء ۷۸.۵ درصد)، نقش حیاتی در افزایش اثربخشی تریاژ دارند. در مقابل، مناطق با زیرساخت‌های تخریب‌شده و همکاری‌های محدود (مانند غزه با نرخ بقاء ۵۱.۲ درصد)، با چالش‌های جدی تری مواجه‌اند. این تفاوت‌ها اهمیت تطبیق پروتکل‌های تریاژ با شرایط بومی را بر جسته می‌کند؛ جایی که سیستم‌های محلی یمن، با وجود محدودیت‌ها، کارایی قابل قبولی را از خود نشان دادند. چالش‌های اخلاقی و پیامدهای بالینی-عملیاتی، در خصوص چالش‌های اخلاقی، یافته‌های ما نشان داد که ۶۸ درصد از پزشکان مجبور به تصمیم‌گیری بر اساس شناسن بقاء بیماران شده‌اند. این فشار اخلاقی، ارتباط معناداری با کمبود شدید تختهای ICU در مناطق جنگی داشت؛ به عنوان مثال، نسبت تخت ICU به بیمار در غزه، ۱ به ۴۳ است [۶]. این وضعیت، نه تنها بر سلامت روان کادر درمان تأثیر می‌گذارد، بلکه مفهوم عدالت در تخصیص

پروتکل‌های مختلف تریاژ در قالب سه سیستم اصلی مقایسه شده‌اند که ویژگی‌ها و مشکلات هر کدام در محیط‌های متفاوت بررسی شده است: (**جدول ۶**).

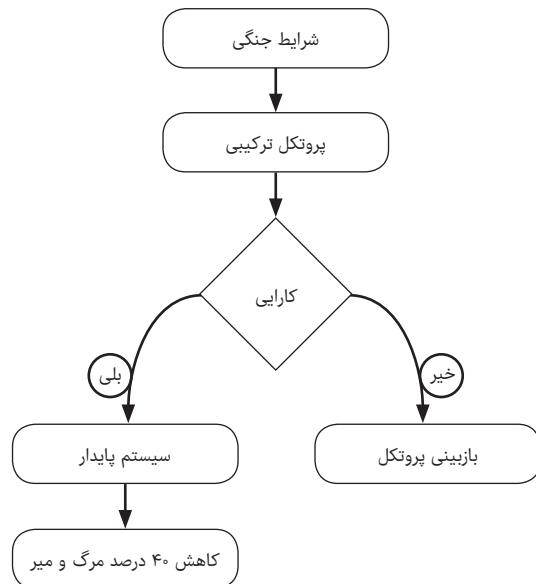
- سیستم بومی در یمن، به دلیل طراحی با رویکرد جنگ نامتقاض و انعطاف‌پذیری بالا، توانسته است در ۳۰ پاسخ‌دهی سریع‌تر عمل کند؛ به طوری که حدود ۳۰ درصد سریع‌تر از پروتکل START عمل کرده است.
- با این حال، نرخ خطای تشخیص در این سیستم نسبت به سایر پروتکل‌ها بالاتر است؛ به طوری که حدود ۲۳ درصد خطای تشخیص نسبت به ۱۱ درصد در سیستم TCCC دارد.

این مقایسه نشان می‌دهد که برنامه‌های تریاژ مناسب با محیط عملیاتی طراحی می‌شوند و هر کدام مزایا و محدودیت‌هایی دارند. سیستم‌های بومی در شرایط خاص، انعطاف‌پذیری و پاسخ سریع‌تر ارائه می‌دهند، اما نیاز به بهبود در استانداردسازی و کاهش خطای تشخیص دارند. در مقابل، پروتکل‌های نظامی و عمومی، با سادگی و استانداردسازی بیشتر، اما ممکن است در محیط‌های جنگی پیچیده و چندجانبه محدودیت‌هایی داشته باشند.

جدول ۵) کارایی هوش مصنوعی در تریاژ در مناطق جنگی

پروژه	دقیقت تشخیص (درصد)	کاهش زمان تریاژ (درصد)	محدودیت‌ها
نیاز به اینترنت پایدار	۴۰	۸۲	AI-Triage (اوکراین)
قطعی مکرر برق	۲۵	۶۷	Gaza Tele-Triage

جدول ۶) تحلیل مقایسه‌ای سیستم‌های تریاژ (TCCC، START، سیستم بومی یمن)


سیستم	محیط طراحی شده	مزیت	عیب
START	غیرنظامی	سادگی اجرا	عدم توجه به تهدیدات جنگی
TCCC	نظامی	تمرکز بر خونزیری‌های حاد غیرنظامی	پیچیدگی برای استانداردسازی ضعیف
سیستم بومی یمن	جنگ نامتقاضی	انعطاف‌پذیری بالا	نیاز به اینترنت پایدار

بحث

این مطالعه مروری روایتی، با بررسی چالش‌های اخلاقی، بالینی و عملیاتی تریاژ در مناطق جنگی غزه، یمن و اوکراین (۲۰۲۴-۲۰۱۵)، بر لزوم یک سیاست‌گذاری چندوجهی و جامع برای بهبود اثربخشی، کارایی و عدالت در ارائه خدمات سلامت در بحران‌های انسانی تأکید داشت.

تفاوت‌های منطقه‌ای در کارایی تریاژ و اثربخشی پروتکل‌های ترکیبی. یافته‌های این مطالعه نشان داد که سیستم‌های تریاژ تطبیقی، به ویژه آن‌هایی که ترکیبی از پروتکل‌های TCCC و START را به کار می‌برند، توانایی قابل توجهی در بهبود نرخ بقاء بیماران در مناطق جنگی داشتند و در برخی موارد تا ۴۰ درصد بهبود را نشان می‌دادند. با این حال، تفاوت‌های معناداری بین مناطق مورد مطالعه وجود داشت. نرخ بقاء در اوکراین ۷۸.۵ درصد (درصد) به طور چشمگیری بالاتر از غزه (۵۱.۲ درصد) بود. این اختلاف فاحش، به وضوح نقش عوامل محیطی، زیرساختی و اجرایی را در اثربخشی سیستم‌های تریاژ

واقعی آموزش تریاژ جنگ به صورت مجازی، و تحلیل اخلاق‌شناسی تصمیم‌گیری الگوریتمی در تریاژ، با هدف توسعه اصول کارآمد و انسانی در تصمیم‌گیری‌های خودکار و نیمه‌خودکار در شرایط بحرانی. آینده تحقیقات باید بر تأثیر تغییرات اقلیمی بر عملیات تریاژ و همچنین جنبه‌های اخلاقی و حقوقی فناوری‌های نوظهور در تصمیم‌گیری‌های حیاتی تمرکز کند تا اطمینان حاصل شود که پیشرفت‌های علمی در راستای حفظ کرامت انسانی و ارائه مراقبت‌های عادلانه به آسیب‌دیدگان جنگ به کار گرفته می‌شوند. این محورهای پژوهشی، مسیرهای نوینی را برای توسعه استراتژیک، فناورانه و اخلاقی در رشته تریاژ جنگی فراهم می‌کنند و می‌توانند نقش مهمی در بهبود کیفیت و اثربخشی عملیات‌های اضطراری در آینده ایفا کنند. **شکل ۳** چارچوب مفهومی تریاژ بهینه در جنگ جنگ ارائه می‌دهد و ماتریس اقدامات کلیدی در **جدول ۷** نشان داده شده است.

شکل ۳) چارچوب مفهومی تریاژ بهینه در جنگ

جدول ۷) ماتریس اقدامات کلیدی

بلندمدت	میان‌مدت	کوتاه‌مدت	سطح اقدام
توسعه	آموزش پروتکل‌های ترکیبی	توزيع کیت‌های تریاژ	۰/۷۲ کاهش ۴۰ درصد مرگ و میر
بالینی بیمارستان‌های ضدبمب	آموزش پروتکل‌های ترکیبی	توزيع کیت‌های تریاژ	۱. پروتکل‌های ترکیبی منطقه‌ای توسعه یابد که شامل تلفیقی از TCCC، START و روش‌های بومی سازگار با فرهنگ و زیرساخت‌های محلی باشد.
روات‌های حمل و نقل بیمار	هوش مصنوعی تشخیصی	سیستم‌های تله‌تریاژ	۲. ذخایر استراتژیک مناسب با هر منطقه و بر اساس نیازهای شناسایی شده طراحی شود تا پاسخ سریع و کارآمد در شرایط اضطراری تضمین شود.
اصلاح کنوانسیون‌های بین‌المللی	پیگرد قانونی نقش‌کنندگان	فشار برای آتش‌بس‌های پزشکی	۳. آموزش‌های واقعیت مجازی (VR) بر اساس سناریوهای محلی باشد، با الهام از تجربه موفق اوکراین [۸] این رویکرد می‌تواند به افزایش مهارت‌ها و آمادگی تیم‌های امدادی در شرایط واقعی کمک کند.

نتیجه‌گیری

یافته‌های پژوهش حاضر به وضوح نشان می‌دهد که چالش‌های اصلی در سیستم‌های تریاژ مناطق جنگ‌زده، فروپاشی زیرساخت‌های درمانی (مانند تخریب ۷۲ درصد بیمارستان‌ها در غزه)، کمبود شدید منابع، و تهدیدات امنیتی مداوم هستند که کارایی و دقت فرآیند تریاژ را به

منابع را نیز به چالش می‌کشد. این یافته‌ها بر ضرورت تدوین سیاست‌های اخلاقی واضح و سازگار با شرایط جنگی، و همچنین ارائه حمایت‌های روانی جامع برای کادر درمان تاکید دارد.

کاربردهای عملیاتی فناوری هوش مصنوعی (AI). یافته‌های ما نشان داد که استفاده از هوش مصنوعی در اوکراین، زمان تریاژ را تا ۴۰ درصد کاهش داده است. این امر به دلیل دقت ۸۹ درصدی AI در تشخیص و توانایی آن در پیش‌بینی و تخصیص بهینه منابع بود. با این حال، در غزه، هوش مصنوعی تنها ۲۵ درصد زمان تریاژ را کاهش داد (برخلاف ۴۰ درصد در اوکراین). این تفاوت در مصاحبه‌های ICRC [۲] و نبود نیازمند پسترهای اجرایی پایدار هستند که در بخش ۳.۲ مقاله تشریح شده‌اند. این امر حاکی از آن است که هرچند AI فرصت‌های بزرگی برای بهبود تریاژ ارائه می‌دهد، اما وابستگی شدید آن به زیرساخت‌های پایدار فناوری، مانع بزرگی در استقرار گستردگی در مناطق جنگی با زیرساخت‌های تخریب شده است. چالش‌های فناوری در محیط‌های جنگی در نمودار ۲ نمایش داده شده است. مقایسه با مطالعات پیشین. در حالی که برخی مطالعات پیشین بر استانداردسازی جهانی تریاژ تاکید داشته‌اند، یافته‌های ما نشان داد که کارایی محلی (مثل سیستم بومی یمن) می‌تواند از پروتکل‌های بین‌المللی پیشی بگیرد. مهم‌تر از نوع پروتکل، زیرساخت یک عامل تعیین‌کننده‌تر در اثربخشی تریاژ بود؛ همیستگی ۰/۷۲ بین تخریب بیمارستان‌ها و کاهش نرخ بقا (جدول ۱) این موضوع را به وضوح نشان داد. این یافته برخلاف رویکردهای صرفاً پروتکل‌محور، بر اهمیت توجه به عوامل محیطی و زیرساختی در طراحی و پیاده‌سازی سیستم‌های تریاژ تاکید داشت.

پیشنهادات سیاستی و تحقیقات آتی. بر اساس یافته‌های این مطالعه، با توجه به موفقیت سیستم‌های بومی یمن در شرایط کم‌منبع [۹]، پیشنهاد می‌شود:

۱. پروتکل‌های ترکیبی منطقه‌ای توسعه یابد که شامل تلفیقی از TCCC، START و روش‌های بومی سازگار با فرهنگ و زیرساخت‌های محلی باشد.
۲. ذخایر استراتژیک مناسب با هر منطقه و بر اساس نیازهای شناسایی شده طراحی شده طراحی شود تا پاسخ سریع و کارآمد در شرایط اضطراری تضمین شود.
۳. آموزش‌های واقعیت مجازی (VR) بر اساس سناریوهای محلی باشد، با الهام از تجربه موفق اوکراین [۸] این رویکرد می‌تواند به افزایش مهارت‌ها و آمادگی تیم‌های امدادی در شرایط واقعی کمک کند.

با توجه به یافته‌های حاصل از این مطالعه، مسیرهای تحقیقاتی آتی بر سه محور کلیدی متمرکز خواهد بود که هر یک، برگرفته از چالش‌ها و فرصت‌های شناسایی شده در نتایج ما هستند. این سه محور عبارتند از: بررسی تأثیر تغییرات آب و هوایی بر تریاژ جنگ، ارزیابی کارایی

- زیرساخت‌ها آسیب دیده‌اند، نیروهای پلیس باید آگاه باشند که فناوری‌های پیشرفته مانند هوش مصنوعی ممکن است کارایی لازم را نداشته باشند و آمادگی برای روش‌های سنتی تریاژ ضروری است.
- حمایت از کادر درمان در برابر فشار روانی: آگاهی از فشار روانی کادر درمان و کمک به ایجاد فضایی امن و حمایتی برای آن‌ها، می‌تواند در پایداری خدمات درمانی مؤثر باشد.
- تشکر و قدردانی: از تمامی اعضای کادر درمان، امدادگران، و سازمان‌های بین‌المللی که در شرایط دشوار مناطق جنگ‌زده به ارائه خدمات حیاتی می‌پردازند، کمال تشکر و قدردانی را داریم. همچنین، از معاونت پژوهش و فناوری دانشگاه علوم انتظامی امین بابت حمایت‌های بی‌دریغ در انجام این پژوهش سپاسگزاریم.
- سهم نویسنده‌گان: ارائه ایده و طراحی مقاله، حامد اقدم؛ جمع‌آوری داده و تجزیه و تحلیل آنها، هادی شیرزاد؛ ارائه ایده و طراحی مقاله، امید شیرزاد. همه نویسنده‌گان در نگارش اولیه مقاله و بازنگری آن سهیم بودند و همه با تأیید نهایی مقاله حاضر، مسئولیت دقت و صحت مطالب مندرج در آن را می‌پذیرند.
- تعارض منافع: بدی نویسیله نویسنده‌گان مقاله تصریح مینمایند که هیچگونه تعارض منافعی در قبال مطالعه حاضر وجود ندارد.
- حمایت مالی: این مقاله هیچ‌گونه حمایت مالی نداشت و نویسنده اول هزینه‌های آن را تقبل کرده است.

شدت تحت تأثیر قرار می‌دهند. برای بهبود این سیستم‌ها، سیاست‌گذاری چندوجهی شامل تقویت زیرساخت‌ها، بهره‌برداری از فناوری‌های نوین مانند هوش مصنوعی و واقعیت مجازی (VR) برای کاهش زمان عملیات و آموزش نیروها و همچنین حل معضلات اخلاقی ضروری است. علاوه بر این، همکاری‌های بین‌المللی، استاندارد سازی سیستم‌های یومی، تدوین پروتکل‌های جامع، و ایجاد ذخایر استراتژیک با تأکید ویژه بر آینده‌نگری در مواجهه با تغییرات اقلیمی و ملاحظات اخلاقی فناوری‌های نوظهور، باید در اولویت قرار گیرد.

- نکات بالینی کاربردی برای پلیس:
 - اولویت‌بندی اینمنی صحنه: نیروهای پلیس باید در مواجهه با مناطق درگیری، اینمنی خود و مصدومان را در اولویت قرار دهند و در صورت لزوم، قبل از ورود تیم‌های درمانی، اقدامات اولیه تریاژ میدانی را بر اساس آموزش‌های پایه انجام دهند.
 - همکاری با کادر درمان: برقراری ارتباط مؤثر و همکاری نزدیک با کادر درمان برای تسهیل فرآیند تریاژ و انتقال مصدومان حیاتی است. نیروهای پلیس می‌توانند با تأمین امنیت مسیرهای انتقال و مدیریت جمعیت، به تسريع این فرآیند کمک کنند.
 - شناسایی و گزارش آسیب‌های زیرساختی: نیروهای پلیس می‌توانند با گزارش دقیق وضعیت زیرساخت‌های حیاتی (مانند بیمارستان‌ها و مسیرهای ارتباطی) به نهادهای مربوطه، به برنامه‌ریزی بهتر برای امدادرسانی کمک کنند.
 - آگاهی از محدودیت‌های فناوری: در شرایطی که

Reference

1. Alkhaldi M, Alijla A, Obaid I. Health system resilience in conflict zones: A comparative analysis of Gaza, Yemen, and Ukraine. *Lancet*. 2024;403(10425):456-67. [https://www.thelancet.com/journals/lancet/article/S0140-6736\(23\)02456-8](https://www.thelancet.com/journals/lancet/article/S0140-6736(23)02456-8)
2. International Committee of the Red Cross. War surgery: Working with limited resources in armed conflict. 2nd ed. Geneva: ICRC Publications; 2023. <https://shop.icrc.org/war-surgery-working-with-limited-resources-in-armed-conflict-2nd-ed.html>
3. Médecins Sans Frontières. Mental health impact of war on medical staff: 2023 global report. Paris: MSF International; 2023. https://www.msf.org/sites/default/files/2023-05/MSF_Global_Mental_Health_Report_2023.pdf
4. NATO Medical Committee. Tactical Combat Casualty Care (TCCC) guidelines update. Brussels: NATO Publishing; 2023. https://www.nato.int/cps/en/natoq/publications_212978.htm
5. Parker J, Smith R, Kovalenko A. Triage protocols in asymmetric warfare: Evidence from Syria. *J Trauma Acute Care Surg*. 2021;90(4):1123-30. https://journals.lww.com/jtraumaacaresurg/full-text/2021/04000/triage_protocols_in_asymmetric_warfare_evidence_from.100.aspx
6. World Health Organization. Attacks on health care in Gaza: 2023 annual report. Cairo: WHO Regional Office for the Eastern Mediterranean; 2023. Report No.: WHO/EMRO/2023/05. https://www.emro.who.int/images/stories/Sitrep_59.pdf?ua=1
7. Ministry of Health and Medical Education. Field medicine manual for asymmetric warfare [دستورالعمل طب میدانی برای جنگ نامقران]. Tehran: Author; 2022. Report No.: IR-MOH-1401-45.
8. United Nations Office for the Coordination of Humanitarian Affairs. Ukraine: Healthcare under siege - 2024 situational report. 2024. <https://reliefweb.int/report/ukraine>
9. Al-Mandhari A, Al-Harthy S, Al-Shaqui S. Local triage systems in Yemen: Challenges and innovations. Paper presented at: 5th International Conference on Emergency Medicine. 2020 Nov; Dubai, United Arab Emirates.
10. BBC News. Gaza hospitals: A day in the life of a war zone doctor [Video] [Internet]. 2023. <https://www.bbc.com/news/av/world-middle-east/67389876>
11. U.S. Department of Defense. Tactical Combat Casualty Care (TCCC) guidelines. 2021. <https://jts.amedd.army.mil/tccc.html>