

ORIGINAL ARTICLE

OPEN ACCESS

A Review of the New Diagnostic Kits Design based on CRISPR

Mehdi Zeinoddini¹ *PhD, Zahra Mardashti¹ MSc, Farnam Jamal Mohammadi¹ MSc

¹ Research Center of Science and Biotechnology, Malek Ashtar University of Technology, Tehran, Iran.

ABSTRACT

AIMS: CRISPR is one of the most important gene editing tools that has been developed rapidly in biotechnology. Apart from the application of CRISPR in gene editing, this technique can be used to design new and accurate diagnostic methods. The aim of this study is to introduce the diagnostic applications of CRISPR and to examine the unique futures of this technology.

MATERIALS AND METHODS: This research was conducted from spring to winter 2024 by reviewing and interpreting authoritative articles and related scientific books. The keywords searched were generally related to CRISPR technology and included gene editing, cas, CRISPR based biosensor, and CRISPR-Chip in Google Scholar, NCBI, PubMed, and other authoritative databases.

FINDINGS: The coronavirus pandemic has led to the development of diagnostic methods that can quickly and accurately detect the presence or absence of a pathogen. The design of portable CRISPR kits, while being simple to operate and not requiring the participation of specialized individuals, can be a suitable option and be beneficial to society in terms of money and time. CRISPR microarrays or CRISPR-Chips are the latest diagnostic kits that are capable of identifying the target at femtomolar detection levels without the need for genome amplification. This method can also be used in criminal identification.

CONCLUSION: In the fields of medicine, criminal identification, biosecurity and food security, the development of diagnostic methods with high sensitivity and specificity, low cost, rapid response and simultaneous detection of multiple targets is very necessary. The CRISPR-Chip is considered one of the promising methods for the development of new diagnostic kits for the identification of biological samples and genome pathogens.

KEYWORDS: CRISPR; Diagnostic kits; Gene editing; Biosensor.

How to cite this article:

Mehdi Zeinoddini M, Mardashti Z, Jamal Mohammadi F. A Review of the New Diagnostic Kits Design based on CRISPR. J Police Med. 2024;13:e15.

*Correspondence:

Address: Babaei Highway, Lavizan, Malek-Ashtar University of Technology, Tehran, Iran,
Postal code: 15875-1774
Mail: zeinoddini@modares.ac.ir

Article History:

Received: 23/06/2024
Accepted: 22/07/2024
ePublished: 28/07/2024

INTRODUCTION

CRISPR, or clustered regularly interspaced short palindromic repeats, is part of the immune system of bacteria and archaea that has evolved naturally in these organisms and has protected them against phages, viruses, and plasmids for many years. This natural complex, consisting of two components, the Cas protein and a guide RNA (gRNA), was first discovered by Professor Jennifer Doudna. The complex is guided to the desired site by the gRNA, which leads to the localization and activation of the Cas protein. Doudna and Emmanuel Charpentier won the 2020 Nobel Prize in Chemistry for introducing this system to the scientific community. A wide range of researchers initially welcomed this system due to its extraordinary ability to precisely edit genes, and they soon realized that, in addition to editing somatic cells, CRISPR can also perform hereditary editing in human germ cells and embryos. This led to a lot of noise in the scientific community, so much so that there was talk of work safety and medical ethics. A few years after introducing CRISPR as a powerful tool for editing genes, researchers at the Doudna Laboratory discovered during an accidental experiment that the cas12 protein, after binding to the target region, madly cuts any genome around it, causing cell death. They got ideas from this behavior to design diagnostic kits [1, 2]. Along the way, Feng Zhang from the Broad Institute observed the same behavior with the Cas13 protein and he also started to invent diagnostic methods. It is worth noting that before the potential of Cas12 and Cas13 for highly accurate diagnostics was discussed, researchers used Cas9 and dCas9 (dead and inactive Cas9) for diagnostic purposes. Although Cas9 and dCas9 both can be detected with high sensitivity and specificity, Cas12 and Cas13 are more popular because they are easier to work with, reveal more accurate results, and have greater flexibility to detect different substances. The commercialization of diagnostic kits that work with the Cas12 and Cas13 mechanisms was first launched in the United States by Zhang's team during the COVID-19 pandemic. As a result, the United States became the leader in conducting the most COVID-19 diagnostic tests. Of course, the diagnostic potential of CRISPR did not cause as much controversy as its potential for gene editing, but it slowly spread around the world [1, 3].

To date, the most important areas of CRISPR work have been gene editing and diagnostics. Apart from the threats that gene editing in germ cells can pose and become a tool for biohackers, researchers hope that by editing genes, they can take steps towards treating diseases in germ cells, before embryo formation,

in early embryonic stages, and even in adult humans. CRISPR was initially introduced to detect the nucleic acid of pathogens, but it soon became clear that it could be programmed to detect a wide variety of substances such as cancer biomarkers, hormones, ions, small biological molecules, toxins, etc. Cancer is a major focus for scientists studying CRISPR, both in the therapeutic and diagnostic fields. To date, many start-up companies have been established to develop CRISPR kits [1, 4]. Usually, the goal of scientists in designing CRISPR kits is to make them portable so that they can operate at the desired location, without relying on complex equipment and trained operators, and researchers are moving towards directly exposing the target sample to CRISPR without the need for genome extraction kits and achieving the desired result. Currently, most CRISPR diagnostic kits are used in the laboratory, and the desired samples, whether nucleic acid or otherwise, must undergo steps to be compatible with the kit, such as extraction, purification, and amplification [5]. Of course, CRISPR microarrays or CRISPR chips perform diagnostic activity without the need for amplification. Today, the biggest challenge for researchers is to achieve a method in which the CRISPR complex can simultaneously identify multiple targets in a single reaction with acceptable sensitivity and specificity. For example, the SHERLOCKv2 method is an extended, one-step assay that uses the thermostable Cas13 enzyme (LwaCas13a) and can simultaneously detect different gene targets in a single reaction. Also, reducing the number of testing steps and reducing the dependence on laboratory instruments are two important approaches in the design of CRISPR kits [6]. All these challenges were also felt by the US DARPA organization and a program called DIGET, meaning Diagnostics Based on Technology, which defined gene editing in 2019 [7].

This study aims to introduce new and potential applications of CRISPR technology and to investigate the unique features of this technology in the field of rapid diagnosis of diseases and genetic disorders. The main focus of the study is to investigate the ability to design a diagnostic kit based on the CRISPR system with programmability, high accuracy, appropriate speed of operation, simplicity of the method, and elimination of the replication process. Also, introducing and investigating the potential of using CRISPR microarrays for genome detection and hereditary mutations without replication in the medical, military, and law enforcement communities are other goals of this study.

MATERIALS AND METHODS

This narrative review study was conducted using relevant articles from reputable English scientific databases, such as ProQuest, PubMed, Scopus, and the Google Scholar search engine, between 2017 and 2024. Keywords related to CRISPR technology, such as gene editing, Cas, CRISPR-based biosensor, CRISPR-Chip, and their possible combinations, were used for the search. After removing duplicates and evaluating the title and abstract, 37 books and articles were selected for the study. First, CRISPR-based biosensors were described, and then the applications of the CRISPR chip, as a priority technology, were evaluated and reviewed to identify pathogens and biomarkers.

Ethical permission: It is worth noting that this article is a review study and since no intervention was made on humans or animals in the research process, compliance with the ethical principles of research is fully guaranteed.

Statistical Analysis: This study is a narrative review, therefore, it is written solely on the analysis of existing sources and does not perform

independent statistical analyses.

FINDINGS

After searching and screening, a final analysis was conducted on 37 articles out of more than one hundred articles. During these studies, it was determined that the real-time PCR-based diagnostic method and the CRISPR-based and CRISPR-chip-based diagnostic methods are among the most important diagnostic methods and have high efficiency and performance. The criteria for this selection are sensitivity, specificity, programmability, speed of operation, and the ability to identify specific genetic sequences in sensitive biosecurity, clinical, and regulatory situations. As a result, these three methods were carefully examined and compared with each other in this study (**Table 1**). It was also determined that leading international organizations have made plans to develop these diagnostic methods (**Table 2**). For the development of CRISPR-based biosensors, various types of Cas enzymes have been used, and a comparison of the structure and

Table 1) Comparison of real-time PCR-based diagnostic methods with CRISPR-based biosensors

Diagnostic method	Advantages	Disadvantages	Challenges
Real-time PCR-based	High sensitivity and specificity, applicable to the detection of live and dead samples, approved by international organizations.	Requirement of expensive equipment, high cost of testing, slow response time, need for experts to perform testing and interpret results.	Dependence on foreign companies for most of the materials used, errors in interpreting results and creating false positives.
CRISPR-based	Low cost, high sensitivity, maintaining test sensitivity in complex clinical samples, no need for complex tools and equipment, fast and convenient for field testing, relatively fast detection time (about half an hour on average), high selectivity for target molecules, ease of design, simplicity in use, high efficiency, epigenetic detection, wide application range, creating new potential for the development of next-generation biosensors, visual detection.	Different preparation steps (such as amplification), off-target detection, need for appropriate storage and transportation conditions.	Not widely used in clinical trials, awaiting clinical validation, integration of all diagnostic steps into a single device and elimination or reduction of preparation steps.
CRISPR-chip-based	Creating the potential for integrating molecular biology with electronics, detection without the need for amplification, SNP detection for use in identity recognition, expanding the boundaries of digital genomics, high efficiency at the diagnostic level, no need for fragmentation of the genomic sample, average efficiency of more than 92%, suitable for easy transportation.	Expensiveness of the reader and the electronic part of the Crispr chip.	Not producing electronic parts domestically.

Table 2) Comparison of enzymes used in CRISPR-based biosensors

Effector proteins	Cas9	Cas12a	Cas13a	Cas14a
Type	II	V	VI	V
Spacer length	18~24nt	18~24nt	22~28nt	22~30nt
Endonuclease domains	HNH, RuvC	RuvC	2*HEPN	RuvC
Guide RNA	sgRNA	crRNA	crRNA	crRNA
PAM/PFS	3', G-rich (NGG)	5', T-rich (TTTN)	5', A/T/C	no
Target	dsDNA	dsDNA, ssDNA	ssRNA only	ssDNA only
cis-cleavage	blunt	staggered	near U or A	staggered
trans-cleavage	no	specific ssDNA	specific ssRNA	specific ssDNA

4 **A Review of the New Diagnostic Kits Design based on CRISPR**
activity of these enzymes is presented in **Table 3**.

Table 3) Final product specifications from DARPA's DIGET program

Feature	Target
Detective range	Less than 10 copies of nucleic acid
Sensitivity and specificity	Above 98%
Detection time	Less than 15 minutes
Detection per unit time	Minimum 10 and maximum 1000 samples
Sample volume	Minimum 150 microliters and maximum 1.5 ml
Sample preparation	Online or in a simple step
Final price	Single and multiple tests cost \$1 and \$10 respectively
Primary genome amplification	No need
Recovery and reprogramming	hours 24
Sample flexibility	More than one sample (blood, sputum, (environmental sample
Stability	Stable in the environment with the lowest energy

DISCUSSION

After the outbreak of COVID-19, CRISPR-based diagnostic methods have attracted the attention of experts and commercial companies as one of the main priorities in the design of pathogen detection kits. The number of CRISPR-derived methods for diagnosis is rapidly increasing, and new diagnostic pathways are presented every day. CRISPR is very flexible and is compatible with most thermal amplification methods, reporters, and detection methods, and although it is usually implemented in microtubes, it can be used in single-well plates, ELISA plates, microarrays, and other laboratory instruments, and shows the results with sufficient accuracy. It can be said that there will be a CRISPR-based diagnostic method in various fields, such as food safety, for every laboratory in the world [6]. The design of portable CRISPR kits, while being simple to operate and not requiring the participation of specialized individuals, can be a suitable option and be beneficial to society in terms of money and time. CRISPR microarrays or CRISPR chips are the latest diagnostic kits that can identify the target at the femtomolar detection level without the need for genome replication. This method can also be used in criminal identification. In the following, an attempt has been made to describe CRISPR-based diagnostic methods.

CRISPR-based biosensors: Conventional diagnostic methods cannot quickly identify pathogenic biological agents, stop a disease before it spreads, and quickly become operational on site in times of need. Since these methods are slow and their programs cannot be changed quickly, they will not be able to respond effectively in responding to biological threats. However, CRISPR-based

diagnostic methods do not have the cumbersome problems of conventional diagnostic methods, which is why they have gained great popularity among researchers. The most important feature of CRISPR is its ease of use. CRISPR methods, whether in the field of gene editing or in the field of diagnostics, are inexpensive and do not require complex equipment for implementation, and can be easily used by non-specialists. Also, the interpretation of their results is easy [9]. In addition, the use of CRISPR kits is not limited to a specific location and is easily portable, and the waiting time for the results to appear has been reported to be a maximum of three hours and a minimum of 15 minutes [6 and 7]. CRISPR, combined with isothermal amplification methods, has partially solved the problem of false-positive results. The greatest popularity of CRISPR is that it can be used to design and manufacture home kits. That is, diagnostic tests can be performed with minimal facilities and non-specialized people in places other than laboratories. The safety of working with CRISPR kits is acceptably high and is not considered a threat to humans or nature [10]. CRISPR-based biosensors operate using a variety of Cas enzymes and detection methods based on fluorescence, electrochemical, Raman scattering (SERS), and colorimetry [11] (**Figure 1**).

Currently, to increase the sensitivity of CRISPR-based diagnostic kits, a thermal amplification step must be performed before the reaction to increase the amount of the target gene. The target gene must increase its amount under the influence of the amplification reactions. LAMP and RPA are the most common amplification methods used with CRISPR, but research has shown that LAMP is more efficient because it is inexpensive, requires fewer enzymes, and reveals the answers faster. It is worth noting that the thermal amplification of the genome in CRISPR methods is not limited to isothermal methods and can also be performed based on multi-temperature methods such as PCR [12]. Four important CRISPR-based biosensors that were developed during the COVID-19 outbreak include SHERLOCK, DETECTR, HOLMES, and CONAN (**Figure 2**). These methods can be performed using a variety of Cas enzymes and also optical detection or using strip kits (LFA) [13].

In some methods, the two amplification and detection steps are implemented separately, but in one-step methods, the two amplification reaction mixtures and the CRISPR reaction are combined. Two-step methods usually have higher accuracy, but their biggest drawback is the formation of aerosols when opening the microtube, which can disrupt the workflow. To

optimize one-step methods, the CRISPR reaction mixture can be placed separately in the lid of the microtube, and the amplification reaction mixture in the bottom. After the desired temperature is applied during genome amplification, the CRISPR mixture gradually moves downward and reaches the bottom of the vessel, and the products of the amplification reaction are obtained. Ideally, researchers are looking to achieve one-step methods that have similar accuracy to two-step methods. On the other hand, the basis of detection with cas12, cas13, and cas14 enzymes is the uncontrolled cuts that these enzymes make on the genomes around them (reporters) after binding to the target region (Figure 3).

However, Cas9 and dCas9 enzymes do not perform off-target cuts and their diagnostic

activity is carried out by binding to the target [14-17]. Some CRISPR-based diagnostic kits require laboratory equipment to track the final result, such as fluorescence measurement devices and electrochemical instruments to detect the results. However, researchers have been able to develop kits to design home kits that do not depend on laboratory equipment for the appearance and examination of the results. Such kits are generally equipped with LFA, color change, portable devices for irradiating UV and laser light, and smartphones, and can provide final results with accuracy similar to real-time PCR. The two main factors for accurate measurement of diagnostic results are sensitivity and specificity. Currently, rapid diagnostic kits available on the market usually do not provide results with high accuracy, and the reliability of

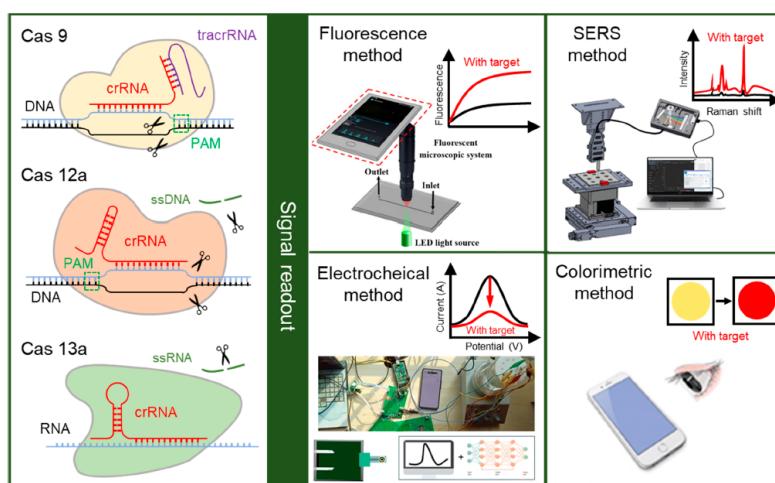


Figure 1) Illustration of CRISPR-based biosensors employing a variety of Cas enzymes that operate using fluorescence-based, electrochemical, surface-enhanced Raman spectroscopy, and colorimetric detection methods [11].

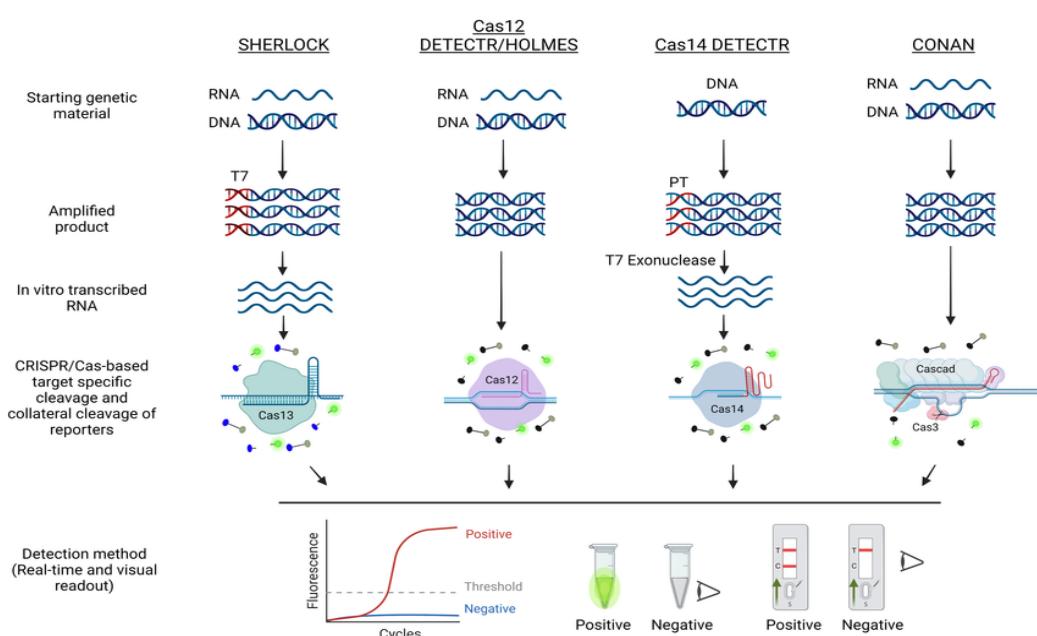


Figure 2) Comparative image of CRISPR-based biosensors used in the detection of the novel coronavirus [13]

A Review of the New Diagnostic Kits Design based on CRISPR

the results published by them requires additional tests using the aforementioned diagnostic methods. However, recent research has shown that the sensitivity and specificity of CRISPR-based diagnostic methods are equivalent to and sometimes higher than conventional methods such as PCR [10-12]. In general, CRISPR-based diagnosis is called CRISPR-DX, and in general,

CRISPR-based detection is performed according to two main methods: the binding method, in which Cas9 and dCas9 proteins operate in this area, and the cleavage method, in which Cas12, Cas13, and Cas14 are included in this group. The design of kits and techniques that work with dCas9 and Cas9 are more complex than other diagnostic Cas, and once the kits are designed and prepared, they usually

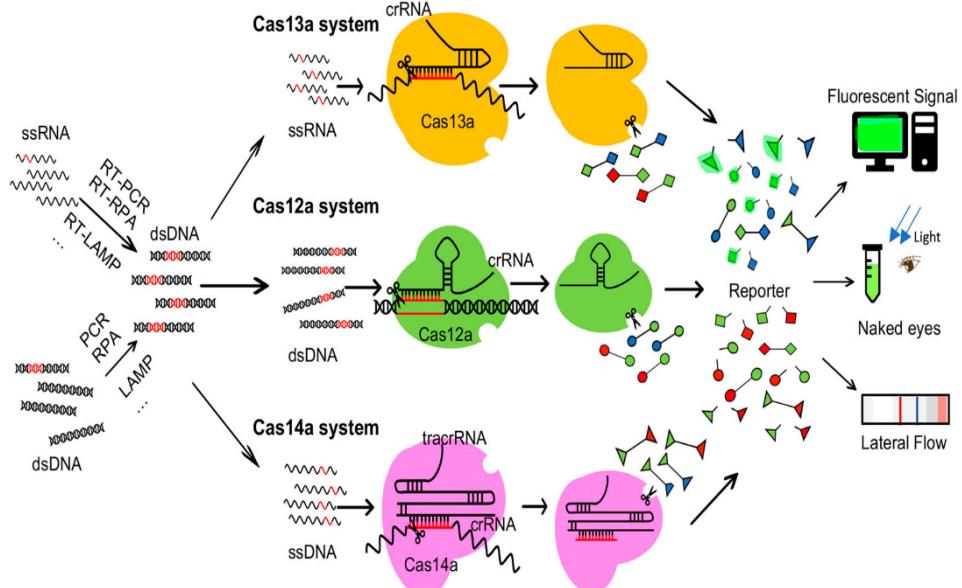


Figure 3) Fluorescence detection in biosensors based on Cas12 (DETECTR), Cas13 (SHERLOCK), and Cas14 (Cas14-DETECTR) [17]

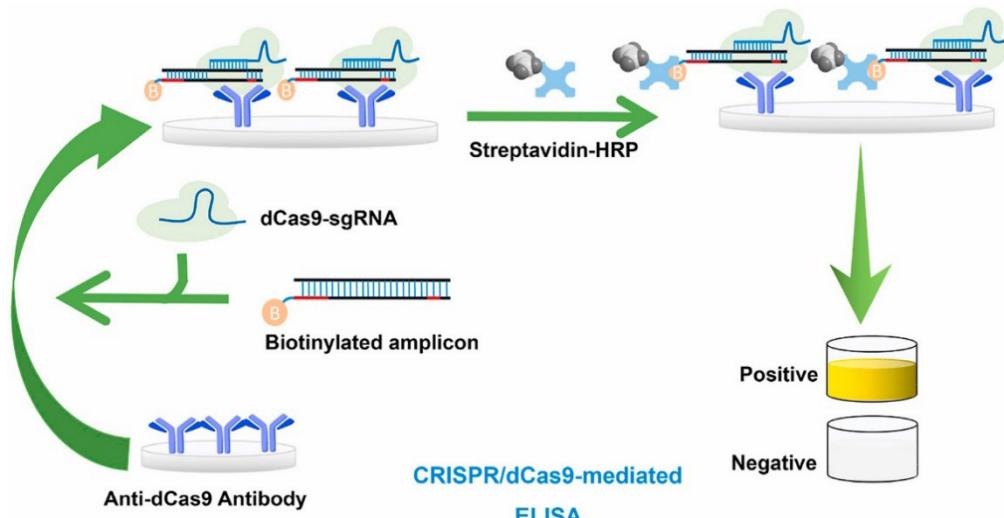


Figure 4) A diagram of the mechanism of action of CASs that perform recognition based on target binding (cas9 and dcas9) [19]

require the addition of multiple biological and chemical agents to display the results (Figure 4) [16, 18, 19].

As mentioned, the basis of the activity of cas12, cas13, and cas14 is the creation of uncontrolled cuts in areas outside the main target.

These cuts are called off-target cuts or trans cleavage. The greater the number of these non-specific cuts, the higher the accuracy of the work. This is exactly the opposite of what is done about Cas9 and dCas9, where efforts should be made to reduce non-specific cuts as much as possible.

On the other hand, cas12, cas13, and cas14 only require an RNA called crRNA (CRISPR RNA) in the gRNA for activity. However, Cas9 and dCas9 require the presence of tracrRNA along with crRNA in the designed gRNA structure. Therefore, the gRNA design stage for Cas9 and dCas9 is more complex and requires more accuracy. Setting up diagnostic kits that work with Cas12, Cas13, and Cas14 requires very few and simple components, such as the Cas enzyme, the designed gRNA, reporters, the corresponding buffer (which has the same composition in most kits regardless of the type of Cas used), and the materials related to the amplification reaction. However, when the kits are planned and designed based on the Cas9 or dCas9 enzyme, a larger number of biological and chemical materials are needed, and as a result, the design is highly complex. Therefore, the preparation steps of kits that work with Cas9 or dCas9 are more difficult and longer than those of Cas12 and Cas13. Also, the appearance of the final results requires more time. The need

for a large number of raw materials and more complex preparation processes compared to other detection Cas have caused researchers to use Cas9 and dCas9 less often [20-23]. In **Table 2**, a comparison of Cas enzymes was examined. These enzymes are proteins with two structural lobes, often consisting of two parts, a nuclease part (NUC) and a recognition part (REC) connected by an arginine-rich bridge. The nuclease part has two domains, HNH and RuvC. In the Cas13 structure, the HEPN domain is involved in the cutting action [24] (**Figure 5**). If Cas enzymes are used alone and without combining with amplification methods to identify different targets, they are still capable of detecting genomes, but with less sensitivity. One of the main goals in designing CRISPR kits is to achieve a technique that detects the presence or absence of the desired target without the need for pre-CRISPR reaction treatments, such as genome extraction and amplification reactions [25]. Such diagnostic kits are known as CRISPR microarrays or CRISPR chips.

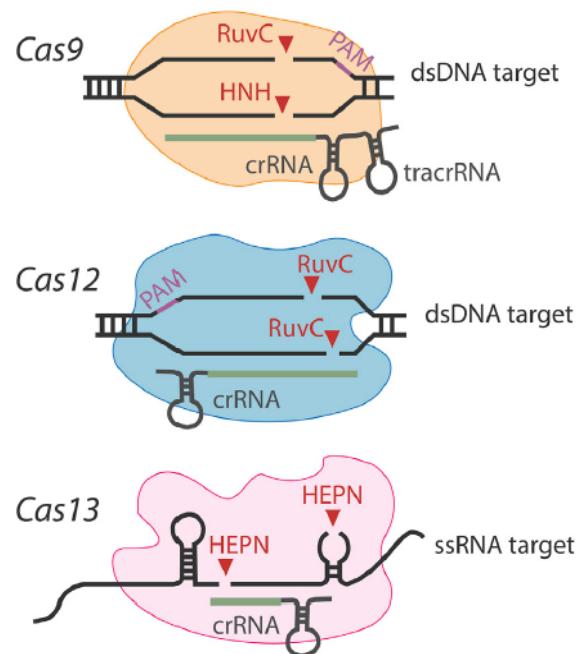


Figure 5) Illustration of the three Cas proteins and their structural regions active in nucleic acid cleavage [24]. Cas9 is structurally composed of two lobes: the nuclease lobe (NUC) and the recognition lobe (REC). The NUC lobe contains two endonuclease domains, HNH and RuvC, along with a PAM-interacting domain. Cas12 contains only a RuvC-like domain, and Cas13 contains two higher eukaryotic and prokaryotic nucleotide-binding domains (HEPN) for nucleic acid cleavage

DARPA aims to harness life sciences to defend U.S. military personnel and revolutionize defense. In this regard, the DIGET program was defined after the introduction of the extraordinary potential of CRISPR in detection. The goal of this program is to develop high-sensitivity and specificity diagnostic systems, small in size,

reprogrammable to identify new targets, and low-cost, capable of detecting any threat at any time and in any possible place. The construction stages of these systems should not take more than a week, and also, the detection of the results should not require laboratory equipment. It is proposed to use strip kits for this purpose. Researchers

A Review of the New Diagnostic Kits Design based on CRISPR

should work towards building devices that can detect a minimum of 10 and a maximum of 1,000 samples in a single test. DARPA wants these diagnostic systems to be able to identify multiple samples in small volumes simultaneously, while performing a single step and not requiring genome replication, and to reveal the final results in less than 15 minutes with such accuracy that it can confidently respond to the threat and make the right decisions. Of course, DARPA's goal is not limited to the medical field, and it looks at diagnostic kits as new soldiers to protect its country. Respiratory diseases, febrile diseases, diseases transmitted by insects and animals, digestive diseases, and harmful microorganisms are biological challenges that DARPA considers a threat and intends to prevent problems caused by them through diagnostic kits. The existence of such kits anywhere in the world can be very useful in the early detection of a pathogen that may lead to an epidemic. Another dimension of this program is the advancement of bioinformatics as a support for diagnostic techniques that can change the system programming to detect new targets in emergencies within 24 hours. **Table 3** shows the specifications and features of the final product intended for the DARPA DIGET program [26].

CRISPR-based biosensor for detecting non-nucleic acid targets: After demonstrating the ability of CRISPR to detect genomes, scientists found that this method can also be programmed to detect other biological or chemical substances such as uric acid, hydroxybenzoic acid, ATP, small organic molecules, metal ions, exosomes, and extracellular vesicles [27, 28]. Since CRISPR systems are activated only by encountering nucleic acids, the detection of non-nucleotide molecules requires the help of intermediaries that link the CRISPR complex to non-nucleotide targets. In a way, the presence or absence of the target molecule should send a message to the mediators, and that mediator, in response to the sent message, will activate or deactivate the CRISPR complex. After the mediator is activated, other similar steps will be taken as if the main target were the genome. Aptamers (also known as chemical antibodies) are one of the best mediators. By recognizing the target molecules and changing its spatial structure, the aptamer is separated from the molecules that are bound to it and binds to the target molecule. The molecules bound to the aptamer are a kind of activator of the CRISPR system, which, by separating from the aptamer and performing a few simple biochemical reactions, cause the Cas enzyme to activate and create uncontrolled cuts by it. These cuts will lead to the reporter substance (fluorophore) moving away from the quencher

(quencher) and the emission of detectable signals. In addition to aptamers, DNAzymes and allosteric transcription factor (aTF) can also be used as mediators. The function of aTF is similar to that of an aptamer, and the researcher must bind double-stranded DNA to aTF. In the presence of a target molecule and binding with aTF, the spatial shape of aTF changes, and the double-stranded DNA is released from it, while the CRISPR complex recognizes the double-stranded DNA and the Cas enzyme is activated (**Figure 6**) [29].

It should be noted that the detection of non-nucleotide targets is done either through direct methods or indirect methods. In indirect methods, we must find a way to release the DNA or RNAs that activate the CRISPR complex, through several steps and with the help of nucleases, with the help of mediators. However, in direct methods, molecules must be designed that act both as an aptamer and as a CRISPR activator. Such molecules are called aptavators. The Aptavator is a strand of DNA that both acts as an aptamer and activates the Cas protein. In the presence of the target molecule, the Aptavator binds to it and the gRNA is no longer able to recognize it, so the Cas is not activated and the reporters are not cut. However, in the absence of the target molecule, the gRNA from the CRISPR complex can recognize and bind to the Aptavator. This binding changes the spatial structure of the CRISPR complex, making it ready to cut the reporters and subsequently generate detectable signals [29]. CRISPR can also serve as a non-invasive method for detecting proteases of a disease or cancer markers. Kits can be designed to simultaneously detect several non-nucleotide molecules in a single reaction. In the identification of non-nucleotide targets by CRISPR, the most commonly used Cas is Cas12, but Cas14 has also been shown to be able to perform well for tracking these targets. The HARRY diagnostic method is one of the methods that works with cas14 and can be programmed to detect histamine, aflatoxin, thrombin, ATP, and Cd2+ [26, 29].

CRISPR microarrays or CRISPR chips: Combining the high-precision capability of CRISPR with the speed and scalability of electronics, the CRISPR chip is an electronic DNA search engine that not only enables DNA detection without amplification but also demonstrates the untapped potential of integrating molecular biology with electronics and nanomaterials. The ability of CRISPR chips to detect genetic and infectious diseases without amplification has been demonstrated in samples from individuals with Duchenne muscular dystrophy and sickle cell disease. Following the success of Kiana Aran and Brett Goldsmith, from the University of California,

Berkeley, startups were founded to commercialize CRISPR chips and perform genotyping without amplification [25]. This capability of CRISPR chips could also be used for criminal identification. In principle, CRISPR chips could be capable of detecting SNPs in the future, which could significantly expand their applications [27]. CRISPR chips also have the potential to push the boundaries of digital genomics. The CRISPR-Chip method involves Cas enzymes and target-specific crRNA complexed onto a graphene-based field-effect transistor (gFET). gFETs consist of an ultra-thin layer of graphene (a crystalline, honeycomb structure of carbon). This material, which acts as a conductive layer, is sensitive enough to allow engineers to detect the ionic content of a solution. CRISPR-Chip technology allows CRISPR

to function properly even when chemically bound to graphene, and the gFET detects the binding of the Cas-gRNA complex to the target DNA. In effect, the gFETs form the core of a microarray-based biosensor. When the target DNA binds to the corresponding CRISPR-Chip complex (RNP), changes in the conductivity of the graphene change the electrical properties of the transistor, which can be measured as a change in current. Notably, this technology does not require labeled reporter molecules, or in other words, the graphene-bound RNP complex, upon binding to the target DNA (hybridization of the target DNA to the RNP complex), stimulates the electrical properties of the gFET, leading to the generation of an electrical signal (Figure 7).

From the analysis of this signal, the

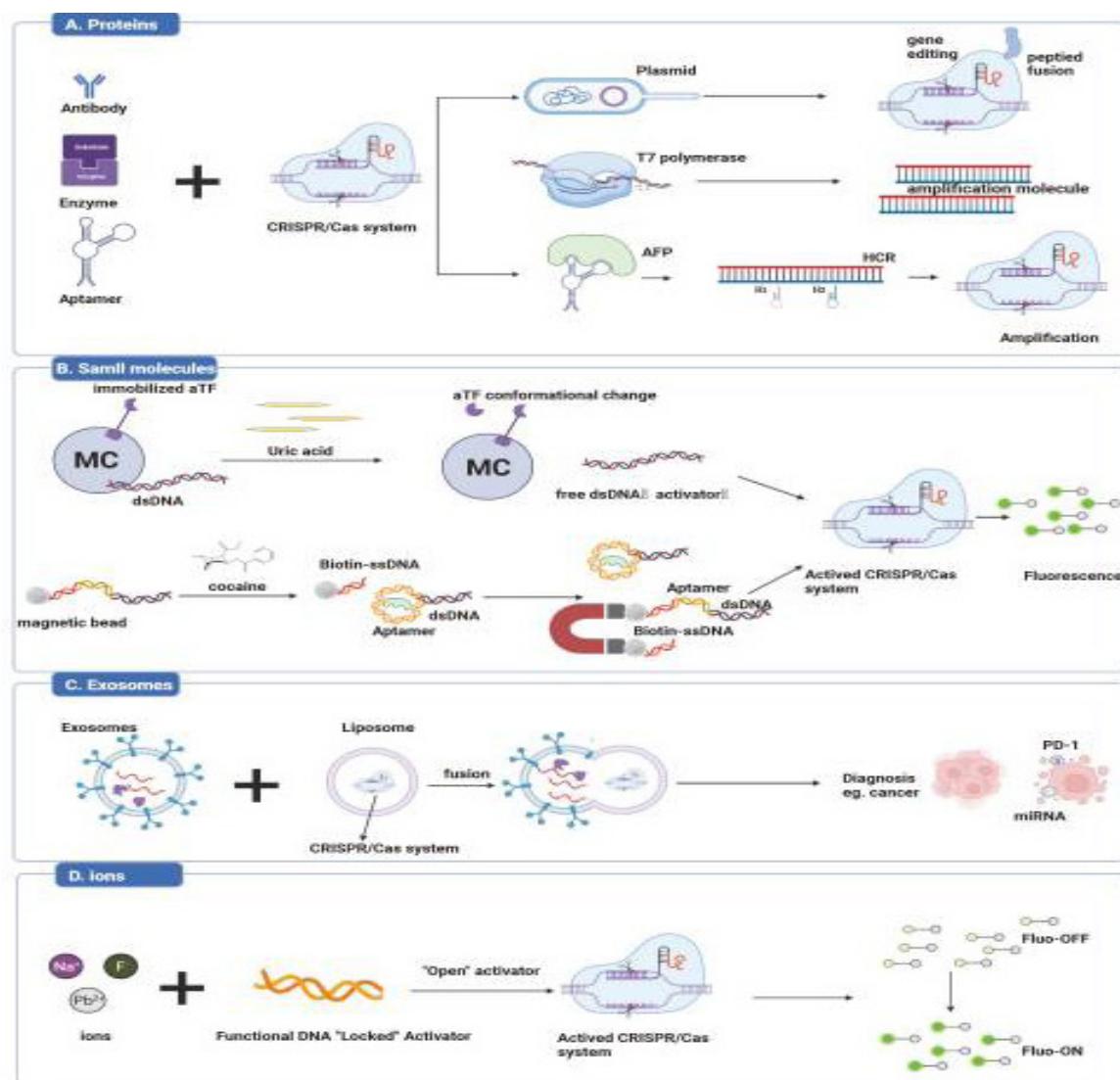


Figure 6) CRISPR-based detection of proteins, small molecules, exosomes, and ions. In combination with functional DNA or fDNA such as aTFs, aptamers, and DNAzymes, the CRISPR system can be used to detect proteins (A), small molecules (B), exosomes (C), and metal ions (D) [29]]

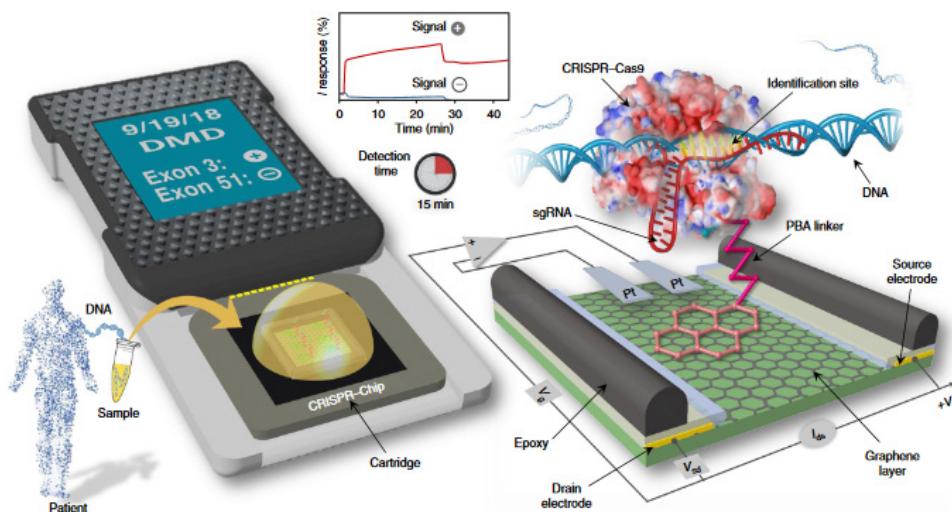


Figure 7) CRISPR-Chip enables gene detection in less than 15 minutes. CRISPR-Chip leverages the gene targeting capability of CRISPR-Cas9 and the sensitivity of gFET to rapidly identify a gene target from an entire genomic sample without amplification [30].

detection of samples and the test result are performed. Cas9 complexed with a target-specific sgRNA (called RNP) is immobilized on the graphene surface of the gFET structure. The immobilized RNP scans the entire genomic DNA until it recognizes its target sequence (the complement of the 5' end of the sgRNA) and, upon recognition, binds to the target DNA. The selective binding event of the target DNA to the RNP complex modulates the electrical properties of the gFET, leading to the output of an electrical signal within 15 minutes [31]. CRISPR-Chip has been used to analyze DNA samples collected from HEK293T cell lines expressing a specific protein and clinical DNA samples with two distinct mutations in exons commonly deleted in individuals with Duchenne muscular dystrophy. In this evaluation, CRISPR-Chip was shown to

have a detection limit of 1.7 femtomolar and did not require genomic amplification. The average efficiency of this method has been estimated to be over 92%. Although CRISPR-Chip does not require fragmentation of the genomic sample, it does require purification of the genomic sample [32-30]. To design a CRISPR-Chip, it is first necessary to fabricate a gFET chip. Today, commercial companies such as Graphena and ArcheBioChip have also introduced these graphene-based chips to the market. After fabricating or preparing gFET chips, Cas enzymes are immobilized on the graphene surface through chemical bonding. After immobilization of the Cas enzyme, the graphene surface is blocked with special materials such as polyethylene glycol (PEG) to prevent non-specific adsorption of charged molecules. Finally, the immobilized Cas is complexed with

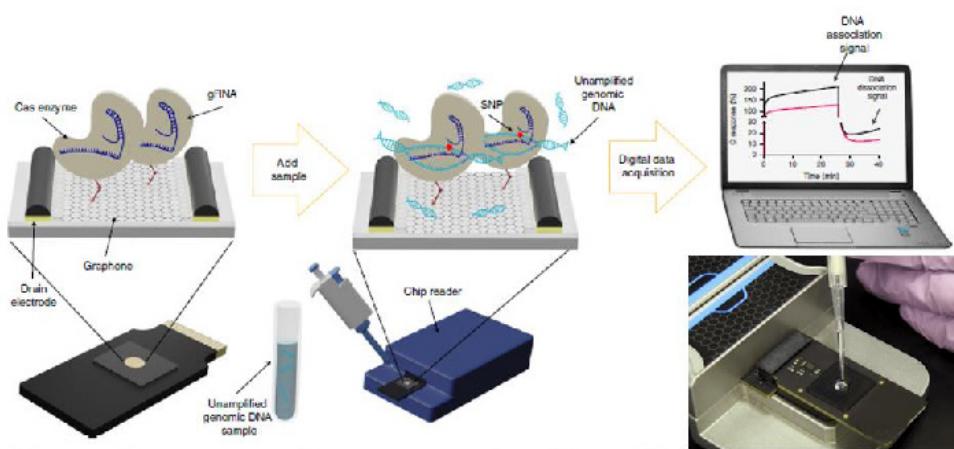


Figure 8) Image of using CRISPR chip to detect SNPs that can be used for identification and criminology [27]

a target DNA-specific sgRNA and forms the RNP complex. In other words, the detection power in the CRISPR-Chip system is due to the combination of its two main components, RNP and graphene. RNP is not only specific for recognizing a specific sequence, but can be programmed to recognize any desired sequence. Graphene has a very high sensitivity to the adsorption and interaction of charged molecules on its surface, and therefore, the combined structure of graphene and CRISPR, or CRISPR-Chip, makes it an ideal candidate for the next generation of nucleic acid detection biosensors [35-33].

CONCLUSIONS

In summary, it can be concluded from this review that the design of CRISPR-based kits is suitable for criminal identification, biosecurity, and food security with high sensitivity and specificity and simultaneous detection of multiple targets. It is also expected that in the future, CRISPR-based diagnostic kits will be used as a field method without the need for initial genome amplification to identify pathogens in the fields of biology and health, and to detect genetic abnormalities and determine criminal identity.

Clinical & Practical Tips in POLICE MEDICINE:

Accordingly, the design of simple and mobile sensor systems for determining criminal identity at the scene of a crime, the rapid identification of pathogens that have pandemic potential, and the determination of genetic abnormalities based on point mutations using a drop of patient blood are among the clinical and criminal points of using CRISPR-based chips.

Acknowledgments: The present studies were conducted at the Research Institute of Bioscience and Technology, Malek Ashtar University of Technology. Therefore, the efforts of the officials of this university are appreciated.

Authors' contributions: Mehdi Zeinoddini provided the idea and design of the article; Mehdi Zeinoddini, Zahra Mardashti, and Farnam Jamal Mohammadi provided the data collection and analysis. All authors contributed to the initial writing and revision of the article, and all accept responsibility for the accuracy and completeness of the content of the article with final approval.

Conflict of Interest: The authors hereby declare that there is no conflict of interest in this study

Financial Sources: This article received no financial support.

نشریه طب انتظامی

۶ دسترسی آزاد

مقاله اصیل

مروی بر طراحی کیت های نوین تشخیصی مبتنی بر کریسپر

مهدی زین الدینی^۱, PhD*, زهرا مردشتی^۱, MSc, فرnam جمال محمدی^۱

^۱ پژوهشکده علوم و فناوری زیستی، دانشگاه صنعتی مالک اشتر، تهران، ایران.

چکیده

اهداف: کریسپر یکی از مهمترین ابزارهای ویرایش ژنی است که با سرعتی بالا در زیست فناوری توسعه یافته است. علاوه بر کاربرد کریسپر در ویرایش ژن، این روش می‌تواند برای طراحی کیت‌های تشخیصی دقیق و نوین نیز استفاده گردد. هدف از این مطالعه معرفی کاربردهای تشخیصی کریسپر و بررسی ویژگی‌های منحصر بفرد این فناوری است.

مواد و روش‌ها: این مطالعه از بهار تا زمستان سال ۱۴۰۳ انجام و ضمن بررسی و تفسیر مقالات معتبر و کتب علمی مربوطه از کلید واژه‌های مرتبط با فناوری کریسپر، نظیر CRISPR-Chip, cas, CRISPR based biosensor و gene editing در پایگاه داده گوگل اسکولار، NCBI, PubMed و سایر پایگاه داده‌های معتبر، استفاده شد.

یافته‌ها: همه‌گیری کرونا باعث شد، روش‌های تشخیصی که با سرعت و دقت بالا حضور یک پاتوژن را می‌توانند تشخیص دهد، توسعه یابد. طراحی کیت‌های کریسپری قابل حمل، ضمن سادگی کار و عدم نیاز به مشارکت افراد مختص، می‌تواند گزینه مناسبی بوده و از نظر مالی و زمانی برای جامعه سودمند واقع شود. ریزآرایه‌های کریسپری یا کریسپر چیپ، جدیدترین نوع کیت‌های تشخیصی است که بدون نیاز به تکثیر ژنوم، قادر است در حد تشخیص فمتومولار، هدف مورد نظر را شناسایی کند. از این روش می‌توان در تشخیص هویت جنایی نیز استفاده نمود.

نتیجه‌گیری: در حوزه پزشکی، تعیین هویت جنایی، امنیت زیستی و امنیت غذایی، توسعه روش‌های تشخیصی با حساسیت و اختصاصیت بالا، هزینه کم، پاسخگویی سریع و تشخیص همزمان چند هدف، بسیار ضروری است. سامانه‌های تشخیصی مبتنی بر کریسپر چیپ یکی از روش‌های آینده دار به منظور توسعه کیت‌های تشخیصی نوین در جهت شناسایی ژنوم پاتوژن‌ها و نمونه‌های زیستی به حساب می‌آید.

کلیدواژه‌ها: کریسپر، کیت‌های تشخیصی، ویرایش ژنی، حسگر زیستی

تاریخچه مقاله:

دریافت: ۱۴۰۳/۰۴/۰۳
پذیرش: ۱۴۰۳/۰۵/۰۱
انتشار: ۱۴۰۳/۰۵/۰۷

نویسنده مسئول*:

آدرس: بزرگراه شهید بابایی، لویزان، دانشگاه صنعتی مالک اشتر، صندوق پستی: ۱۷۷۴-۱۵۸۷۵. پست الکترونیکی: zeinoddini@modares.ac.ir

نحوه استناد به مقاله:

Mehdi Zeinoddini M, Mardashti Z, Jamal Mohammadi F. A Review of the New Diagnostic Kits Design based on CRISPR. J Police Med. 2024;13:e15.

کریسپر در ابتدا، برای تشخیص نوکلئیک اسید پاتوژن‌ها معرفی شد، اما خیلی زود مشخص شد می‌تواند برای شناسایی انواع مختلفی از مواد مانند نشانگرهای زیستی سرطان، هورمون‌ها، یون‌ها، مولکول‌های کوچک زیستی، سموم و غیره برنامه‌ریزی شود. سرطان چه در حوزه درمانی و چه در حوزه تشخیصی به شدت مورد توجه دانشمندانی است که در مورد کریسپر پژوهش می‌کنند. تا به امروز، شرکت‌های نوپای زیادی برای توسعه کیت‌های کریسپری تأسیس شده است [۱، ۴]. معمولاً هدف دانشمندان در طراحی کیت‌های کریسپری قابل حمل بودن آن است، تا بتوانند در محل مورد نظر، بدون وابستگی به تجهیزات پیچیده و اپارتوهای آموزش‌دهنده عمل کند و حرکت محققان به سمتی است که نمونه‌های هدف را بدون نیاز به کیت‌های استخراج ژنوم، مستقیماً تحت تأثیر کریسپر قرار داده و به نتیجه دلخواه برسند. در حال حاضر، اکثر کیت‌های تشخیصی کریسپر در آزمایشگاه مورد استفاده قرار می‌گیرند و نمونه‌های مورد نظر چه از جنس نوکلئیک اسید باشد و چه غیر از آن، باید مراحلی را برای سازگارشدن با کیت، مانند استخراج، خالص‌سازی و تکثیر طی کند [۵]. البته، ریزآرایه‌های کریسپری یا کریسپر چیپ بدون نیاز به تکثیر، فعالیت تشخیصی را انجام می‌دهد. امروزه بزرگترین چالش محققان، رسیدن به روشی است که کمپلکس کریسپر در آن بتواند با حساسیت و اختصاصیت قابل قبول، همزمان چندین هدف را در یک واکنش شناسایی کند. به عنوان مثال، روش SHERLOCKv2، یک آزمون توسعه یافته و یک مرحله‌ای است که در آن، از آنزیم cas13 مقاوم به حرارت (LwaCas13a) استفاده می‌شود و می‌تواند همزمان و در یک واکنش، اهداف ژنی متفاوت را مورد شناسایی قرار دهد. همچنین، کاهش مراحل آزمایش و کاهش وابستگی به ابزار آلات آزمایشگاهی، دو رویکرد مهم در طراحی کیت‌های کریسپری است [۶]. تمامی این چالش‌ها، توسط سازمان دارپایی آمریکا نیز احساس شد و برنامه‌ای تحت عنوان DIGET، به معنی روش‌های تشخیصی مبتنی بر فناوری، ویرایش ژن را در سال ۲۰۱۹ تعریف کرد [۷].

هدف از این مطالعه معرفی کاربردهای نوین و بالقوه فناوری کریسپر و بررسی ویژگی‌های منحصر به فرد این فناوری در حوزه تشخیص سریع بیماری‌ها و اختلالات ژنتیکی است. بیشتر تمرکز مطالعه بر بررسی تووانایی طراحی کیت تشخیص مبتنی بر سامانه کریسپر با داشتن قابلیت برنامه‌ریزی، دقت بالا، سرعت عملکرد مناسب، سادگی روش و حذف فرآیند تکثیر است. همچنین معرفی و بررسی پتانسیل کاربرد ریزآرایه‌های کریسپری جهت تشخیص ژنوم و چشش‌های ارثی بدون تکثیر در جوامع پزشکی و نظامی و انتظامی از اهداف دیگر این مطالعه می‌باشد.

مقدمه

کریسپر یا تناوب‌های کوتاه پالیندروم فاصله‌دار منظم خوش‌های، بخشی از سامانه ایمنی باکتری‌ها و آرکی‌های است که به طور طبیعی در این جانداران تکامل یافته و سالیان متمادی است که آنها را در برایر فاژها، ویروس‌ها و پلاسمیدها محافظت می‌نماید. این کمپلکس طبیعی، متشکل از دو جزء پروتئین cas RNA و راهنمای (gRNA) است که توانست برای اولین بار، توجه پروفوسور جنیفر دودن را به خود جلب کند. کمپلکس توسط gRNA به ناحیه مورد نظر هدایت می‌شود و منجر به استقرار و فعال‌سازی پروتئین cas می‌شود. دودن امانوئل شارپتیر، به علت معرفی این سامانه به جامعه علمی، برنده جایزه نوبل شیمی در سال 2020 شدند. این سامانه، در ابتدا به علت تووانایی خارق‌العاده‌ای که در ویرایش دقیق ژن‌ها داشت مورد استقبال طیف وسیعی از محققین قرار گرفت و خیلی زود متوجه شدند، کریسپر علاوه بر ویرایش سلول‌های سوماتیکی، می‌تواند ویرایش‌های ارثی در سلول‌های زایا و جنین انسانی نیز انجام دهد. همین امر منجر به ایجاد سر و صدای زیاد در جامعه علمی شد به‌طوری که صحبت از ایمنی کار و اخلاق پزشکی به میان آمد. بعد از گذشت چند سال از معرفی کریسپر به عنوان ابزاری قدرتمند برای ویرایش ژن‌ها، محققین آزمایشگاه دودن طی یک آزمایش اتفاقی متوجه شدند پروتئین cas12، پس از اتصال به ناحیه هدف، به صورت دیوانه‌وار هر ژنومی که اطرافش باشد را برش زده و باعث مرگ سلول می‌شود. آن‌ها از این رفتار برای طراحی کیت‌های تشخیصی ایده گرفتند [۱، ۲]. در این مسیر، فنگ ژنگ از موسسه براد، همین رفتار را در مورد پروتئین cas13 مشاهده کرد و او نیز اقدام به ابداع روش‌های تشخیصی نمود. البته گفتنی است قبل از مطرح شدن پتانسیل cas12 و cas13 برای تشخیص‌های بسیار دقیق، محققان از cas9 و cas9 (dcas9) مارده و غیرفعال برای اهداف تشخیصی استفاده می‌کردند. با آنکه cas9 و cas9 هم توان تشخیص با حساسیت و اختصاصیت بالا را دارند، اما cas12 و cas13 از محبوبیت بالاتری برخوردار هستند چراکه کار با آنها راحت‌تر است، نتایج دقیق‌تری را آشکار می‌کند و هم انعطاف‌پذیری بیشتری برای تشخیص مواد مختلف دارد. تجاری‌سازی کیت‌های تشخیصی که با کار می‌کند، در دوران همه‌گیری کرونا برای اولین بار در آمریکا توسط تیم ژنگ آغاز شد. در نتیجه، آمریکا پیش‌تاز در انجام بیشترین آزمون‌های تشخیص کرونا شد. البته، پتانسیل تشخیصی کریسپر به اندازه پتانسیل آن برای ویرایش ژن جنجال به پا نکرد، اما به آرامی در سرتاسر جهان گسترش یافت [۱، ۳].

تا به امروز پراهمیت‌ترین حوزه‌های کاری کریسپر، ویرایش ژن و تشخیص بوده است. جدای از تهدیداتی که ویرایش ژن در سلول‌های زایا می‌تواند داشته باشد و به یکی از ابزارهای هکرهای زیستی تبدیل شود،

روش‌ها

این مطالعه مروری روایتی، با استفاده از مقالات مرتبط از پایگاه‌های علمی معتبر انگلیسی، مانند ProQuest، PubMed، Scopus و موتور جستجوی Scholar Google، در بازه زمانی ۲۰۱۷ تا ۲۰۲۴ انجام شد. کلیدواژه‌های مرتبط با فناوری کریپسپر، نظیر CRISPR، cas، editing gene،Chip-CRISPR، biosensor و ترکیبات احتمالی آنها، برای جستجو استفاده شد. پس از حذف موارد تکراری و ارزیابی عنوان و چکیده، ۳۷ کتاب و مقاله برای مطالعه انتخاب شدند. ابتدا، حسگرهای زیستی مبتنی بر کریپسپر تشریح شد و سپس کاربردهای کریپسپر چیپ، به عنوان فناوری اولویت‌دار، به مظور شناسایی پاتوژن‌ها و نشانگرهای زیستی، ارزیابی و بررسی گردید.

ملاحظات اخلاقی: شایان ذکر است که این مقاله یک مطالعه مروری است و از آن‌جا که در فرآیند پژوهش و تحقیق هیچ مداخله‌ای بر انسان یا حیوان صورت نگرفته، رعایت اصول اخلاقی تحقیق بهطور کامل تضمین می‌شود. تجزیه و تحلیل آماری داده‌ها: این مطالعه یک مرور روایتی است، بنابراین، صرفاً بر تحلیل منابع موجود نوشته

جدول ۱: مقایسه روش‌های تشخیصی مبتنی بر ریل تایم PCR با حسگرهای زیستی مبتنی بر کریپسپر

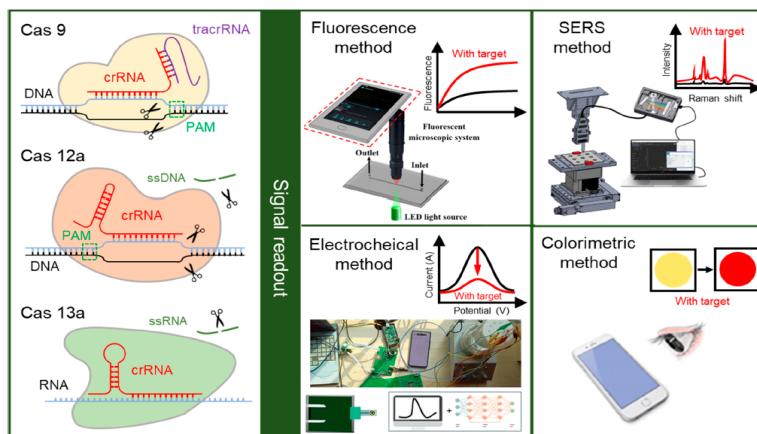
روش تشخیصی	مزایا	معایب	چالش‌ها
مبتنی بر ریل PCR	حساسیت و اختصاصیت بالا، بکارگیری برای تشخیص نمونه‌های زنده و مرده، مورد تایید سازمان‌های بین‌المللی.	نیاز به تجهیزات گران قیمت، بالا بودن هزینه انجام آزمون، صولانی بودن زمان پاسخگویی، نیاز به افاده متخصص جهت انجام آزمون و تفسیر نتایج.	واستگی به شرکت‌های خارجی جهت تهیه اغلب مواد مورد استفاده، خطای در تفسیر نتایج و ایجاد جواب‌های مثبت کاذب.
مبتنی بر کریپسپر چیپ	هزینه کم، حساسیت بالا، حفظ حساسیت نسبت در نمونه‌های بالینی پیچیده، بدون نیاز به ابزار و تجهیزات پیچیده، سریع و راحت برای آزمایش میدانی، زمان تشخیص نسبتاً سریع (به طور میانگین حدود نیم ساعت)، گزینش پذیری بالا برای مولکول‌های هدف، سهولت طراحی، سادگی در استفاده، کارآمدی زیاد، تشخیص اپی ژنتیک، دامنه کاربردی گسترده، ایجاد پتانسیل نوین برای توسعه حسگرهای زیستی نسل بعد، تشخیص بصری.	مراحل مختلف آمادسازی (مانند تکفیر)، تشخیص خارج از هدف یا Off-target، نیاز به شرایط تگهداری و حمل و نقل مناسب.	عدم استفاده به طور گسترده در کارآزمایی‌های بالینی، در انتظار تأیید انتشاری بالینی، ادغام تمام مراحل تشخیص در قالب یک دستگاه و حذف یا کاهش مراحل آماده سازی.
مبتنی بر کریپسپر حدقه	ایجاد پتانسیل ادغام زیست شناسی مولکولی با الکترونیک، تشخیص بدون نیاز به تکثیر، تشخیص SNP برای کاربرد در حد تشخیصی، عدم نیاز به تکه تکه شدن نمونه ژنومی، میانگین بازدهی بیش از ۹۲ درصد، دارای استحکام مناسب جهت حمل و نقل آسان.	گران بودن دستگاه خوشنش گر و بخش الکترونیکی کریپسپر چیپ.	عدم تولید بخش‌های الکترونیکی در داخل کشور.

جدول ۲: مقایسه آنزیم‌ها که در حسگرهای زیستی مبتنی بر کریپسپر استفاده می‌شود.

Effector proteins	Cas9	Cas12a	Cas13a	Cas14a
Type	II	V	VI	V
Spacer length	18~24nt	18~24nt	22~28nt	22~30nt
Endonuclease domains	HNH, RuvC	RuvC	2*HEPN	RuvC
Guide RNA	sgRNA	crRNA	crRNA	crRNA
PAM/PFS	3', G-rich (NGG)	5', T-rich (TTTN)	5', A/T/C	no
Target	dsDNA	dsDNA, ssDNA	ssRNA only	ssDNA only
cis-cleavage	blunt	staggered	near U or A	staggered
trans-cleavage	no	specific ssDNA	specific ssRNA	specific ssDNA

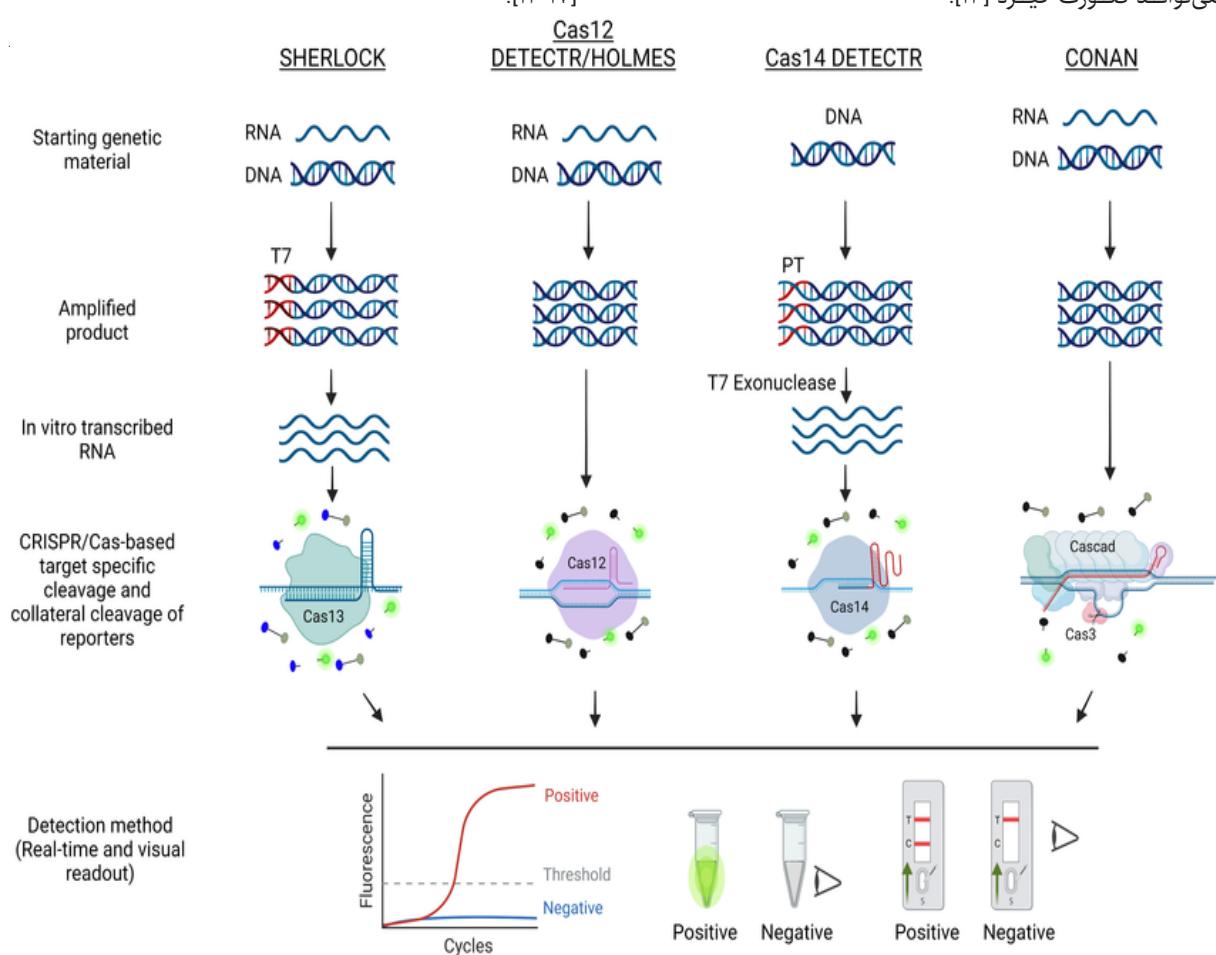
مروری بر طراحی کیت های نوین تشخیصی مبتنی بر کریسپر

است که بدون نیاز به تکثیر ژنوم، قادر است در حد تشخیص فمتومولار، هدف مورد نظر را شناسایی کند. این روش می توان در تشخیص هویت جنایی نیز استفاده نمود. در ادامه، تلاش شده است تا روش های تشخیصی مبتنی بر کریسپر تشريح گردد.


حسگرهای زیستی مبتنی بر کریسپر: روش های تشخیصی مرسوم نمی توانند عوامل زیستی بیماری را به سرعت شناسایی کنند، قبل از شیوع یک بیماری آن را متوقف کرده و در موقع ضروری به سرعت در محل، عملیاتی گردند. از آنجایی که این روش ها کند هستند و نمی توان برنامه آنها را به سرعت تغییر داد، پس قادر نخواهد بود در پاسخ به تهدیدات زیستی مؤثر واقع شود. اما روش های تشخیصی مبتنی بر کریسپر مشکلات دست و پاگیر روش های متدالو شخیصی را ندارد، به همین علت محبوبیت بالایی در بین محققین پیدا کرده اند. مهم ترین ویژگی کریسپر استفاده آسان از آن است. روش های کریسپری، چه در حوزه ویرایش ژن و چه در حوزه تشخیصی، ضمن کم هزینه بودن و عدم نیاز به تجهیزات پیچیده برای پیاده سازی، می تواند به آسانی توسط افراد غیر مختص بکارگیری شود. همچنین، تفسیر نتایج حاصل از آن ها به سادگی امکان پذیر است [۹]. علاوه بر این، استفاده از کیت های کریسپری محدود به مکان خاصی نبوده و به راحتی قابل حمل و نقل هستند و مدت زمان انتظار برای ظهر نتایج، حداقل سه ساعت و حداقل ۱۵ دقیقه گزارش شده است [۶ و ۷]. کریسپر ضمن ترکیب با روش های تکثیری هم دما، مشکل بروز جواب های مثبت کاذب را تا حدودی حل کرده است. بیشترین محبوبیت کریسپر به این دلیل است که می توان آن را برای طراحی و ساخت کیت های خانگی مورد استفاده قرار داد. یعنی، بتوان آزمایش های تشخیصی را با حداقل امکانات و افراد غیر مختص در مکان هایی غیر از آزمایشگاه انجام داد. این می کار با کیت های کریسپری تا حد قابل قبولی بالاست و برای انسان و طبیعت تهدید محسوب نمی شود [۱۰]. حسگرهای زیستی مبتنی بر کریسپر با استفاده از انواع

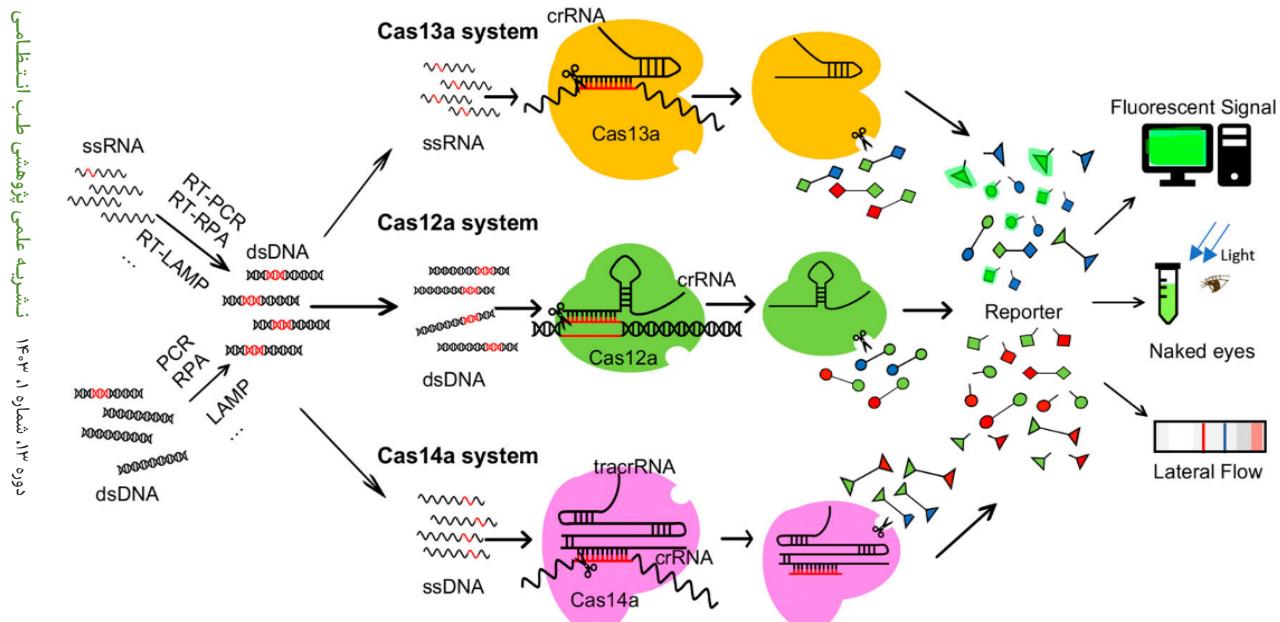
جدول ۳: مشخصات محصول نهایی حاصل از برنامه DIGET دارپا [۲۶]

ویژگی	هدف
محدوده تشخیصی	کمتر از ۱۰ کپی از اسید نوکلئیک بالای ۹۸ درصد
حساسیت و اختصاصیت	کمتر از ۱۵ دقیقه
زمان تشخیص	حداقل ۱۰ و حداکثر ۱۰۰۰ نمونه
تشخیص در زمان واحد	حداقل ۱۵ میکرو لیتر و حداکثر ۱/۵ میلی لیتر
حجم نمونه	تنهی نمونه
تلهی نمونه	تصورت برخط یا در یک مرحله ساده برای آزمون های تکی و چندتایی به ترتیب یک و ده دلار
قیمت نهایی	تکثیر اولیه ژنوم
بازیابی و برنامه ریزی	۲۴ ساعت
مجدد	بیش از یک نمونه (خون، خلط، نمونه محیطی)
انعطاف پذیری نمونه	پایدار در محیط با کمترین انرژی


بحث

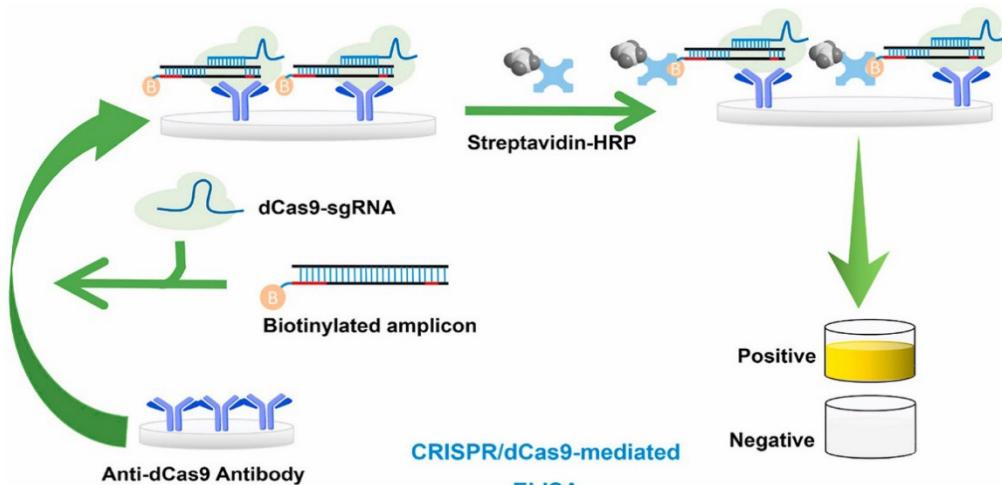
بعد از شیوع بیماری کووید ۱۹، روش های تشخیصی مبتنی بر کریسپر، به عنوان یکی از اولویت های اصلی در طراحی کیت های شناسایی عوامل بیماری از، مورد توجه متخصصین و شرکت های تجاری قرار گرفت. تعداد روش های مشتق از کریسپر برای تشخیص، به سرعت رو به افزایش است و هر روزه مسیرهای تشخیصی جدیدی ارائه می شود. کریسپر، انعطاف پذیری بسیار بالایی دارد و با اکثر روش های تکثیر دمایی، گزارشگرها و روش های آشکار سازی نتایج، وفق یافته است و با آنکه معمولاً در میکروتیوب ها پیاده سازی می شود، می تواند در پلیت های تک خانه، پلیت های الیزا، ریز آرایه ها و سایر ابزار آلات آزمایشگاهی مورد استفاده قرار گرفته و نتایج را با دقت کافی نشان دهد. شاید بتوان گفت، به اندازه هر آزمایشگاه در جهان، یک روش تشخیصی بر پایه کریسپر در حوزه های مختلف، نظیر امنیت غذایی وجود خواهد داشت [۶]. طراحی کیت های کریسپری قابل حمل، ضمن سادگی کار و عدم نیاز به مشارکت افراد مختص، می تواند گزینه مناسبی بوده و از نظر مالی و زمانی برای جامعه سودمند واقع شود. ریز آرایه های کریسپری یا کریسپر چیپ، جدیدترین کیت های تشخیصی

شکل ۱: تصویری از حسگرهای زیستی مبتنی بر کریسپر با بکارگیری انواع آنزیم های Cas که با استفاده از روش های آشکار سازی مبتنی بر فلورسانس، الکتروشیمیابی، طیف سنجی رامان تشخیص شده سطحی و رنگ سنجی فعالیت می کند [۱۱].


جدا از هم پیاده‌سازی می‌شوند، اما در روش‌های یک مرحله‌ای، دو مخلوط واکنش تکثیری و واکنش کریسپری با هم ترکیب می‌شوند. روش‌های دو مرحله‌ای معمولاً دقت بالاتری دارند، اما بزرگ‌ترین نقص آنها تشکیل آئروسل‌ها هنگام باز شدن در میکروتیوب است که می‌تواند در روند کار اختلال ایجاد کند. برای بهینه‌سازی روش‌های یک مرحله‌ای، می‌توان مخلوط واکنش کریسپری را در درب میکروتیوب و مخلوط واکنش تکثیری را در کف آن به صورت مجزا قرار داد. بعد از اعمال دمای مورد نظر حین تکثیرشدن ژنوم، مخلوط کریسپری به تدریج به سمت پایین حرکت می‌کند و به کف ظرف و محصولات حاصل از واکنش تکثیری می‌رسد. محققین در حالت ایده‌آل، به دنبال رسیدن به روش‌های یک مرحله‌ای هستند که دققی مشابه روش‌های دو مرحله داشته باشد. از سوی دیگر، مبنای تشخیص با آنزیم‌های cas12، cas13، cas14 و cas13، cas12، cas9 (شکل ۳) است که این آنزیم‌ها بعد از اتصال به ناحیه هدف، بر روی ژنوم‌هایی اطرافشان (گزارشگرها)، ایجاد می‌کند (شکل ۳). اما آنزیم‌های cas9 و برش‌های خارج از ناحیه هدف را انجام نمی‌دهد و با اتصال به هدف فعالیت تشخیصی‌شان انجام می‌شود [۱۴-۱۷].

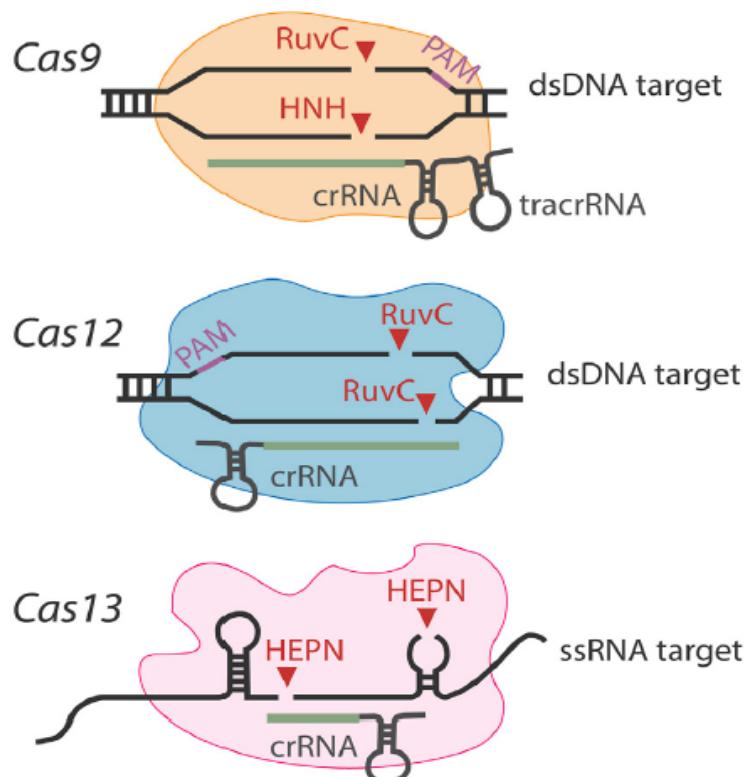
شکل ۲: تصویری مقایسه‌ای از حسگرهای زیستی مبتنی بر کریسپر که در تشخیص کرونا ویروس جدید مورد استفاده قرار گرفت [۱۳].

زین الدینی و همکاران آنزیم‌های Cas و روش‌های آشکارسازی مبتنی بر فلورسانس، الکتروشیمیایی، پراکنیش رامان (SERS) و رنگ‌سنجی فعالیت می‌کند [۱۱] (شکل ۱).


در حال حاضر، برای افزایش حساسیت کیت‌های تشخیصی مبتنی بر کریسپر باید قبل از انجامشدن واکنش، یک مرحله تکثیر دمایی انجام شود تا مقدار ژن مورد نظر افزایش یابد. ژن مورد نظر باید تحت تأثیر واکنش‌های تکثیری، مقدارش افزایش یابد. LAMP و RPA از مرسوم‌ترین روش‌های تکثیری به کار گرفته شده LAMP را کریسپر است، اما تحقیقات نشان داده که همراه با کریسپر است، اما تحقیقات نشان داده که کارایی بهتری دارد، زیرا ضمن قیمت ارزان، به آنزیم‌های کمتری نیاز نیاز دارد و جواب‌ها سریع‌تر را نمایان می‌کند. گفتنی است تکثیر دمایی ژنوم در روش‌های کریسپری محدود به روش‌های هم دما نبوده و می‌تواند براساس روش‌های چنددمایی مانند PCR نیز انجام شود [۱۲]. چهار حسگر زیستی مهم مبتنی بر کریسپر که در زمان شیوع DE-SHERLOCK کووید ۱۹ توسعه یافته، شامل TECTR، HOLMES و CONAN است (شکل ۲). این روش‌ها با استفاده از انواع آنزیم‌های Cas و همچنین، آشکارسازی به صورت چشمی یا استفاده از کیت‌های نواری (LFA) می‌تواند صورت گیرد [۱۳].

شکل ۳: آشکارسازی فلورسانس در حسگرهای زیستی مبتنی بر Cas1۲ (DETECTR) Cas1۳ (SHERLOCK) Cas1۴ (DETECTR) Cas1۳ و Cas1۴.

تمکیلی توسط روش های تشخیصی نام برده شده است. اما تحقیقات اخیر نشان داده که حساسیت و اختصاصیت روش های تشخیصی مبتنی بر کریسپر، معادل و گاهی بالاتر از روش های مرسوم مانند PCR است [۱۰-۱۲]. بطور کلی، تشخیص بر مبنای کریسپر را اصطلاحاً DX-CRISPR می نامند و به طور کلی، شناسایی توسط کریسپر، طبق دو روش اصلی انجام می شود: روش اتصالی که پروتئین های cas9 و dCas9 در این حوزه فعالیت دارند و روش برشی که Cas13، Cas12، Cas14 و Cas9 در این گروه قرار می گیرند. طراحی کیت ها و تکنیک هایی که با dCas9 و dCas9 و cas9 همچنین کیت بعد از طراحی و آماده شدن، معمولاً برای ظاهر کردن نتایج، نیازمند افزودن مواد زیستی و شیمیایی متعدد هستند (شکل ۴) [۱۳، ۱۴، ۱۵].

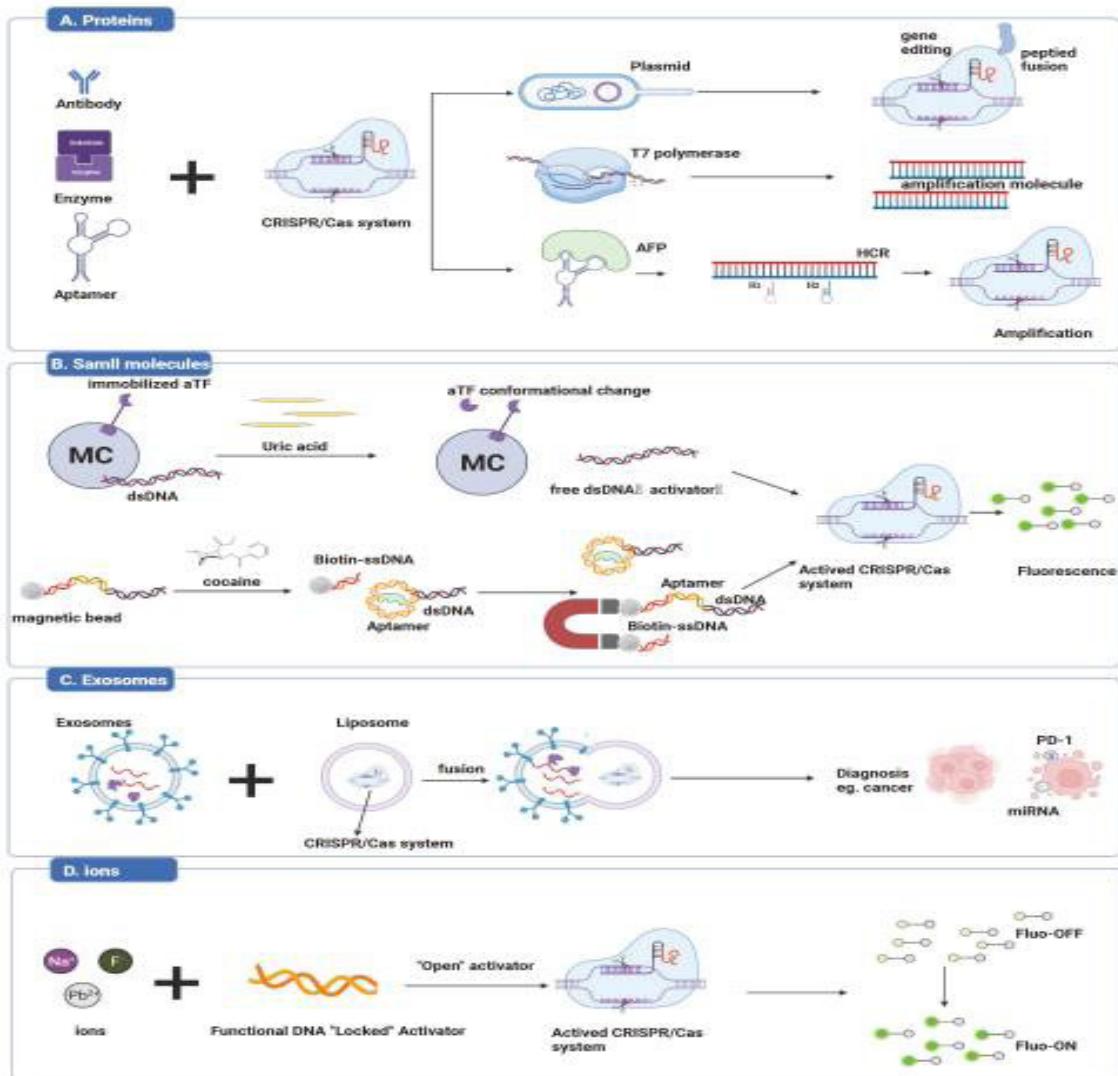

برای ریابی نتیجه نهایی، به تجهیزات آزمایشگاهی مانند دستگاه هایی برای سنجش فلورسانس و ابزارهای الکتروشیمیایی برای آشکارسازی نتایج نیاز دارند. اما محققین با هدف طراحی کیت های خانگی توانسته اند کیت هایی را توسعه دهند که ظهور و بررسی نتایج در آنها هیچ وابستگی به تجهیزات آزمایشگاهی نداشته باشد. این قبیل کیت ها عموماً با LFA، تغییر رنگ، دستگاه های قابل حمل برای تاباندن نور UV و لیزر و تلفن های هوشمند، می توانند نتایج نهایی را با دقتی مشابه real time PCR ارائه دهد. دو فاکتور اصلی برای سنجش دقیق نتایج روش های تشخیصی، حساسیت و اختصاصیت است. در حال حاضر، کیت های تشخیصی سریع که در بازار وجود دارند، معمولاً با دقت بالایی نتایج را ارائه نمی دهند و اطمینان از نتایج منتشر شده توسط آنها، نیازمند آزمون های

شکل ۴: تصویری از نحوه عمل کیت هایی که بر مبنای اتصال به هدف (cas9 و dCas9) شناسایی را انجام می دهند [۱۶].

که با cas9 یا cas13 کار می‌کند نسبت به cas12 و cas13 دشوارتر و طولانی‌تر است. همچنین، ظهور نتایج نهایی نیز به زمان بیتشری نیازمند است. نیاز به مواد اولیه زیاد و فرآیندهای آماده‌سازی پیچیده‌تر نسبت به سایر Cas های شناساگر، باعث شده محققین استفاده از cas9 و cas13 را کمتر در دستور کار خود قرار دهند [۲۰-۲۳]. در جدول ۲، مقایسه آنزیم‌های Cas مورد قرار گرفت. این آنزیم‌ها، پروتئین‌هایی با دلوب ساختاری است که اغلب ساختار (NUC) آنها از دو بخش تشکیل شده است، بخش نوکلئازی (Cas12) و بخش تشخیصی (REC) که از طریق یک پل غنی از آرزنین به هم متصل می‌شود. بخش نوکلئازی دارای دو دومین HNH و RuvC است. در ساختار Cas13، دومین RuvC در HNH است. در ساختار Cas12، دومین HNH در RuvC است. اگر آنزیم‌های Cas به اعمال برش نقش دارد [۲۴] (شکل ۵). اگر آنزیم‌های Cas به تنها یک و بدون ترکیب شدن با روش‌های تکثیری بخواهند برای شناسایی هدف‌های مختلف استفاده شوند، باز هم توانایی ردیابی ژنوم‌ها را دارند اما با حساسیت کمتر. یکی از اهداف اصلی در طراحی کیت‌های کریسپری رسیدن به تکنیکی است که بدون نیاز به تیمارهای پیش از واکنش کریسپری، مانند استخراج ژنوم و انجام واکنش‌های تکثیری، حضور یا عدم حضور هدف مورد نظر را شناسایی کند [۲۵]. این گونه کیت‌های تشخیصی، به ریزآرایه‌های کریسپری یا کریسپر چیپ معروفند.

همانگونه که اشاره شد، اساس فعالیت Cas12، Cas13 و Cas14 ایجاد برش‌های کنترل نشده در نواحی خارج از هدف اصلی است. به این برش‌ها اصطلاحاً برش‌های trans cleavage یا off target گفته می‌شود. هرچه تعداد این برش‌های غیراختصاصی زیادتر باشد دقت کار بالاتر می‌رود. این درست بر عکس چیزی است که در رابطه با Cas9 و Cas13 انجام می‌شود که باید سعی گردد تا حد امکان از برش‌های غیراختصاصی کاسته شود. از سوی دیگر، RNA Cas14 و Cas13، Cas12 تحت عنوان crRNA (کریسپر RNA) در gRNA دارد. اما Cas9 نیز crRNA، Cas12، Cas13 به حضور tracrRNA همراه با در ساختار طراحی شده Cas14 است. لذا، مرحله gRNA طراحی Cas9 برای gRNA و Cas13 پیچیده‌تر بوده و نیازمند دقت بیشتری است. راهاندازی کیت‌های تشخیصی که با Cas12، Cas14 و Cas13 کار می‌کند، به اجزای بسیار کم و ساده‌ای از قبیل آنزیم Cas، RNA طراحی شده، گزارشگرها، بافر مربوطه (که در اکثر کیت‌ها فارغ از نوع استفاده شده ترکیب یکسانی دارد) و مواد مربوط به واکنش تکثیری، نیاز دارد. اما زمانی که کیت‌ها بر اساس آنزیم Cas9 یا Cas12 برنامه‌ریزی و طراحی می‌شود، به تعداد بیشتری از مواد زیستی و شیمیایی نیاز است و درنتیجه طراحی آن پیچیدگی بالایی دارد. لذا مراحل آماده‌سازی کیت‌های Cas9

شکل ۵: تصویری از سه پروتئین Cas و بخش‌های ساختاری فعال آن در برش اسیدهای نوکلئیک [۲۴]. Cas9 از نظر ساختاری دارای دو لوب است: لوب نوکلئاز (NUC) و لوب شناسایی (REC). لوب NUC شامل دو حوزه اندونوکلئاز HNH و RuvC است، همراه با یک دومین تعامل با PAM است. Cas12، Cas13، Cas14، شامل دو دومین اتصالی به نوکلئوتید یوکاربیوت‌های عالی و پروکاربیوت‌ها (HEPN) است. جهت برش اسید نوکلئیک است.

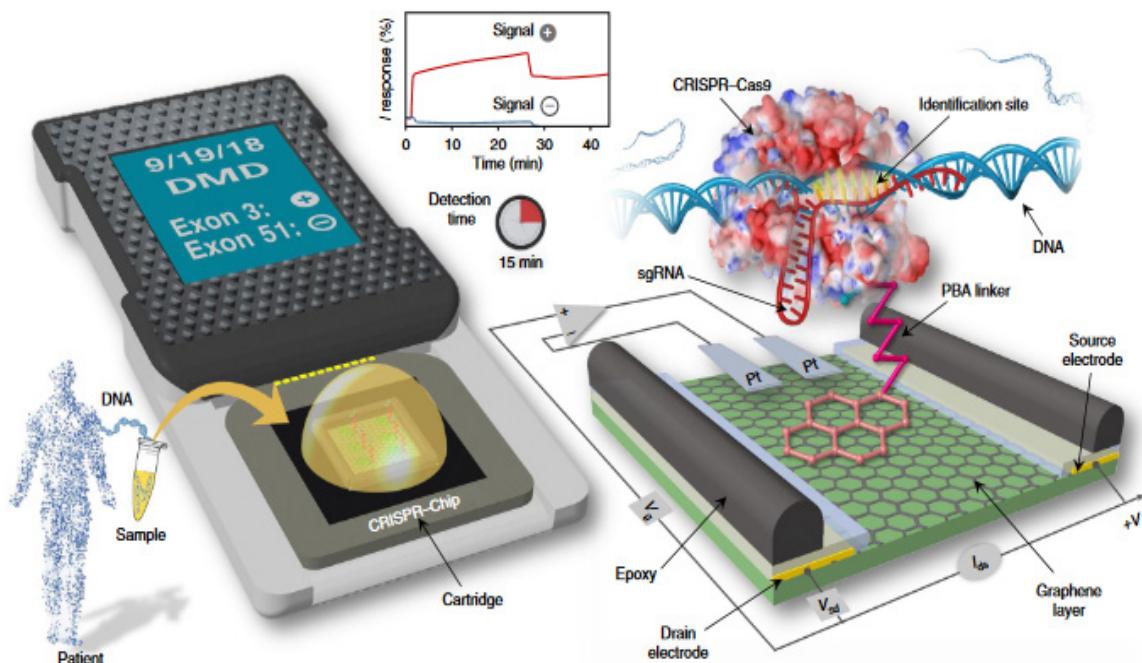

پیامی برای واسطه‌ها بفرستد و آن واسطه در پاسخ به پیام ارسال شده باعث فعال شدن یا غیرفعال شدن کمپلکس کریسپری شود. بعد از فعالیت واسطه، سایر مراحل مشابه زمانی طی خواهد شد که هدف اصلی، ژنوم بود. آپتامراها (که به آنتی‌بادی‌های شیمیایی نیز معروف است) یکی از بهترین واسطه‌ها می‌باشند. آپتامر با تشخیص مولکول‌های هدف و ضمن تغییر ساختار فضایی‌اش از مولکول‌هایی که به آن متصل هستند جدا شده و به مولکول هدف اتصال می‌یابد. مولکول‌های متصل به آپتامر به نوعی فعال‌کننده سیستم کریسپری هستند که با جداشدن از آپتامر و انجام چند واکنش ساده ببیوشیمیایی باعث فعالیت آنزیم cas و ایجاد برش‌های کنترل‌نشده توسط آن می‌شوند. این برش‌ها منجر به دور شدن ماده گزارشگر (فلوروفور) از خاموش‌کننده (کوینیچر) و ساعت‌گذرنمایی سینگال‌های قابل ریدایزme از آن، کمپلکس کریسپر شکل فضایی aTF و آزادشدن DNA دورشته از آن، کمپلکس کریسپر DNA دو رشته را شناسایی کرده و آنزیم cas فعال می‌شود (شکل ۶) [۲۹]. لازم به ذکر است که تشخیص اهداف غیر نوکلئوتیدی، یا از طریق روش‌های مستقیم یا روش‌های غیر مستقیم، باید با کمک واسطه‌ها راهی برای منتشرشدن RNA یا DNA های فعال‌کننده کمپلکس کریسپر، طی چند مرحله و با کمک نوکلئازها پیدا کنیم. اما در روش‌های مستقیم، باید مولکول‌هایی را طراحی کرد که هم در نقش آپتامر و هم در نقش فعال‌کننده کریسپر باشند. اصطلاحاً به چنین مولکول‌هایی Aptavator می‌گویند. در واقع، Aptavator یک رشته از DNA است که هم نقش آپتامری دارد و هم پروتئین cas را فعال می‌کند. در حضور مولکول هدف، Aptavator به آن می‌چسبد و gRNA یا دیگر قادر به شناسایی آن خواهد بود، لذا cas فعال نشده و گزارشگرها برش نمی‌خورد. اما، در غیاب مولکول هدف، gRNA از کمپلکس کریسپر می‌تواند Aptavator را تشخیص دهد و به آن متصل شود. این اتصال باعث تغییر ساختار فضایی کمپلکس کریسپری شده و آن را آماده ایجاد برش در گزارشگرها و به دنبال آن ایجاد سینگال‌های قابل ریدایزی می‌کند [۲۹]. همچنین، کریسپر می‌تواند به عنوان یک روش غیرتھاجمی برای تشخیص پروتئازهای یک بیماری یا نشانگرهای سرطانی عمل کند. می‌توان کیت‌هایی را طراحی کرد که همزمان چند مولکول غیر نوکلئوتیدی را در قالب یک واکنش، شناسایی نماید. در شناسایی اهداف غیرنوکلئوتیدی توسط کریسپر، بیشترین cas مورد استفاده، cas12 است، اما cas14 هم نشان داده که می‌تواند برای ریدایزی این اهداف به خوبی انجام وظیفه کند. روش تشخیصی HARRY یکی از روش‌هایی است که با cas14 کار

داریاً قصد دارد از علوم زیستی در جهت دفاع از کارکنان نظامی آمریکا بهره‌برداری کرده و انقلابی جدید در حوزه دفاعی راه بیندازد. در همین راستا، برنامه DIGET را بعد از معرفی شدن پتانسیل فوق العاده کریسپر در تشخیص، تعریف کرد. هدف این برنامه، توسعه سیستم‌های تشخیصی با حساسیت و اختصاصیت بالا، اندازه کوچک، قابل برنامه‌ریزی مجدد برای شناسایی اهداف جدید و کم هزینه است که بتواند هر تهدید را در هر زمان و در هر مکان ممکن شناسایی کند. مراحل ساخت این سامانه‌ها نباید بیشتر از یک هفته طول بکشد و همچنین، آشکارسازی نتایج نباید به تجهیزات آزمایشگاهی محتاج باشد و بیشنهاد شده است که از کیت‌های نواری برای این منظور استفاده گردد. محققین باید در جهت ساخت دستگاه‌هایی فعالیت کنند که حداقل ۱۰ و حدکثر ۱۰۰۰ نمونه را در یک آزمون واحد تشخیص دهد. داریا می‌خواهد این سامانه‌های تشخیصی ضمن انجام یک مرحله و عدم نیاز به تکثیر ژنوم، بتواند چندین نمونه را در حجم‌های کم به صورت همزمان شناسایی کرده و در کمتر از ۱۵ دقیقه، نتایج نهایی را با چنان دقیقی آشکار کند که بتوان با اطمینان به تهدید پاسخ داده و تصمیمات درستی اتخاذ کرد. البته هدف داریا تنها به حوزه پزشکی محدود نمی‌شود و به نوعی به کیت‌های تشخیصی به عنوان سربازان جدید برای محافظت از کشورش نگاه می‌کند. بیماری‌های تنفسی، بیماری‌های تب‌زا، بیماری‌های منتقل‌شونده توسط حشرات و حیوانات، بیماری‌های گوارشی و میکرووارگانیسم‌های مضر، چالش‌های زیستی است که از نظر داریا تهدید محسوب شده و قصد پیشگیری از بروز مشکلات توسط آنها به واسطه کیت‌های تشخیصی را دارد. وجود چنین کیت‌هایی در هر نقطه‌ای از جهان می‌تواند در تشخیص زودهنگام یک پاتوزن که ممکن است منجر به همه گیری شود تا حد زیادی کاربردی باشد. بُعد دیگر این برنامه، پیشرفت حوزه بیوانفورماتیکی به عنوان پشتیبان تکنیک‌های تشخیصی است که در موقع اضطراری حدکثر تا ۲۴ ساعت بتواند برنامه‌ریزی سیستم را برای ریدایزی اهداف جدید تغییر دهد. در **جدول ۳**، مشخصات و ویژگی‌های محصول نهایی مورد نظر در برنامه DIGET داریا نشان داده شده است [۲۶].

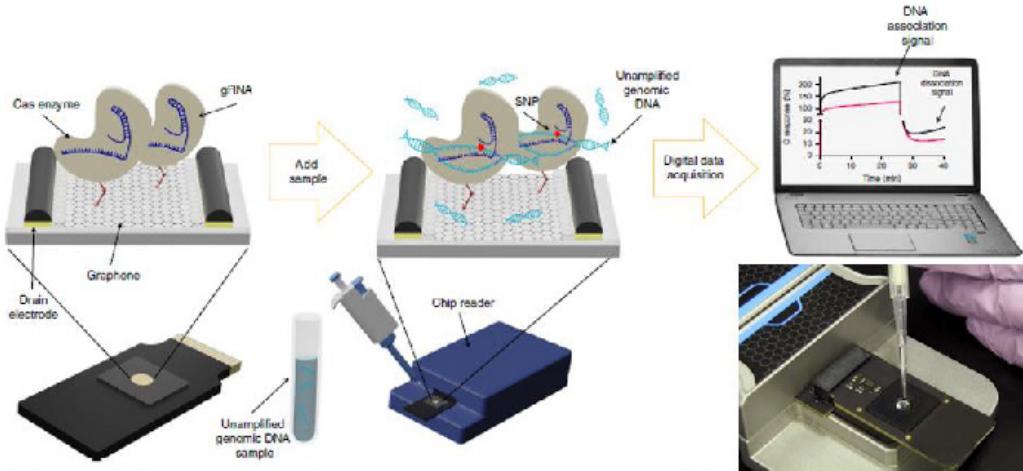
حسگر زیستی مبتنی بر کریسپر جهت تشخیص اهدافی غیر اسید نوکلئیکی: بعد از اثبات توانایی کریسپر در تشخیص ژنوم، دانشمندان دریافت‌هایند که می‌توان این روش را برای شناسایی سایر مواد زیستی یا شیمیایی مانند اسید اوریک، هیدروکسی بنزوئیک اسید، ATP، مولکول‌های آلی کوچک، یون‌های فلزی، اگزوزوم ها و وزیکول‌های خارج سلولی نیز برنامه‌ریزی کرد [۲۷، ۲۸]. از آنجایی که سیستم‌های کریسپری تنها به واسطه برخورد با اسیدهای نوکلئیک فعال می‌شوند، لذا برای شناسایی مولکول‌های غیرنوکلئوتیدی باید از واسطه‌هایی کمک بگیریم که کمپلکس کریسپری را به اهداف غیرنوکلئوتیدی مرتبط سازند. به نوعی، حضور یا عدم حضور مولکول هدف، باید

می‌کند و می‌تواند برای تشخیص هیستامین، آفلاتوکسین،

ترومبین، ATP و Cd2+ برنامه‌ریزی شود [۲۶].


شکل ۶: تشخیص پروتئین‌ها، مولکول‌های کوچک، اگزوزوم‌ها و یون‌ها بر اساس کریسپر. در ترکیب با DNA عملکردی یا fDNA مانند aTFs، آپتامرهای aDNAزیم (B)، اگزوزوم‌ها (C) و یون‌های فلزی (D) استفاده شود [۲۶].

هویت جنایی نیز می‌توان استفاده نمود. در اصل، کریسپر چیپ در آینده توانایی تشخیص SNP‌ها را دارد و این توانایی می‌تواند کاربرد آن را به طور قابل توجهی گسترش دهد [۲۷]. همچنین، کریسپر چیپ این پتانسیل را دارد که مزهای ژنومیک دیجیتال را گسترش دهد. روش کریسپر چیپ شامل آنزیم‌های Cas و کمپلکس شده با crRNA اختصاصی برای هدف و تثبیت آن بر روی ترانزیستور با خاصیت اثر میدانی مبتنی بر گرافن (gfET) است. ها شامل یک لایه گرافن (ساختار بلوری و لانه زنبوری از جنس کربن) فوق العاده نازک است. این ماده که به عنوان یک لایه رسانا استفاده می‌شود، به اندازه کافی حساس است که به مهندسان امکان می‌دهد محتوای محلول یونی را تشخیص دهند. فناوری کریسپر چیپ به کریسپر اجرازه می‌دهد حتی در هنگام اتصال شیمیابی


ریزآرایه‌های کریسپری یا کریسپر چیپ: ترکیب توانایی بسیار دقیق کریسپر با سرعت و مقیاس پذیری الکترونیک، یک موتور جستجوی DNA الکترونیکی به نام کریسپر چیپ را ارائه می‌دهد که نه تنها تشخیص DNA را بدون تکثیر امکان‌پذیر می‌کند، بلکه پتانسیل استفاده نشده ادغام زیست شناسی مولکولی با الکترونیک و نانومواد را نمایان می‌سازد. توانایی کریسپر چیپ در تشخیص بیماری‌های ژنتیکی و بیماری‌های عفونی بدون تکثیر در نمونه‌های افراد مبتلا به دیستروفی عضلانی دوش و اختلال سلول داسی شکل مشخص شده است. پس از موقیت کیانا آران و برت گلدا سمیت، از دانشگاه کالیفرنیا، شرکت‌های استارت آپی برای تجاری‌سازی کریسپر چیپ و شناسایی ژنتیک بدون تکثیر، تأسیس گردید [۲۵]. از این قابلیت کریسپر چیپ برای تشخیص

دیستروفی عضلانی دوشن حذف می شوند، بکارگیری شده است. در این ارزیابی، کریسپر چیپ نشان داد که دارای حد تشخیصی ۱.۷ فمتو مولار و بدون نیاز به تکثیر ژنومی است. میانگین بازدهی این روش بیش از ۹۲ درصد تخمین شده است. اگرچه کریسپر چیپ نیازی به تکثیر شدن نمونه ژنومی ندارد ولی به خالص سازی نمونه ژنومی نیاز دارد [۳۰-۳۲]. برای طراحی کریسپر چیپ ابتدا لازم است تراشه gFET و ساخته شود. امروزه شرکت های تجاری نظیر گرافنا و آرچه بیوچیپ نیز این تراشه های مبتنی بر گرافن را به بازار ارائه کرده اند. پس از ساخت یا تهیه تراشه های gFET، آنزیم های Cas بر روی سطح گرافن از طریق پیوند Cas، شیمیابی ثبیت می شوند. بعد از ثبیت آنزیم Cas، مسدود کردن سطح گرافن با مواد خاصی نظیر پلی اتیلن گلیکول (PEG) برای جلوگیری از جذب غیر اختصاصی مولکول های باردار، انجام می شود. در نهایت Cas ثبیت شده با یک sgRNA اختصاصی DNA هدف، کمپلکس می شود و کمپلکس RNP را تشکیل می دهد. به بیان دیگر، قدرت تشخیصی در سامانه کریسپر چیپ به دلیل ترکیب دو جزء اصلی آن یعنی RNP و گرافن است. RNP نه تنها اختصاصی برای شناسایی یک توالی مشخص است، بلکه قابل برنامه ریزی برای شناسایی هر توالی دلخواهی است. گرافن دارای حساسیت بسیار زیاد به جذب و برهمنکش مولکول های باردار در سطح خود بوده و بنا براین، ساختار نزکی بین گرافن و کریسپر یا همان کریسپر چیپ آن را به یک کاندیدای ایده آل برای نسل بعدی حسگرهای زیستی شناسایگر اسیدهای نوکلئیک تبدیل می کند [۳۳-۳۵].

به گرافن عملکرد مناسب را داشته باشد و gFET اتصال کمپلکس gRNA-Cas به DNA هدف را تشخیص می دهد. در حقیقت gFET ها هسته مرکز حسگر زیستی مبتنی بر ریزآرایه ها را تشکیل می دهد. در زمان اتصال DNA هدف به کمپلکس کریسپری مربوطه (RNP)، تغییرات در رسانایی گرافن باعث تغییر خواص الکتریکی ترانزیستور می شود که می توان تغییر جریان آن را اندازه گیری کرد. قابل توجه است که این فناوری به مولکول های گزارشگر لبیل شده، نیازی ندارد یا به عبارت دیگر کمپلکس RNP متصصل به گرافن پس از اتصال به DNA هدف (هیبریداسیون DNA) هدف به کمپلکس (RNP) خواص الکتریکی gFET را تحریک می کند و منجر به تولید سیگنال الکتریکی می شود (شکل ۷). از روی تحلیل این سیگنال، تشخیص نمونه ها و نتیجه آزمون صورت می گیرد. Cas9 کمپلکس شده با یک sgRNA خاص هدف (که به آن RNP گفته می شود) روی سطح گرافن در ساختار gFET gFET ثبیت می شود. RNP تثبیت شده کل DNA ژنومی را اسکن می کند تا زمانی که توالی هدف خود را شناسایی کند (مکمل انتهای ۵' در sgRNA) و پس از شناسایی به DNA هدف به کمپلکس می شود. رویداد اتصال انتخابی DNA هدف به کمپلکس RNP ویژگی های الکتریکی در عرض ۱۵ دقیقه می شود به خروجی سیگنال الکتریکی در ۱۵ دقیقه می شود [۳۱]. کریسپر چیپ برای تجزیه و تحلیل نمونه های DNA جمع آوری شده از رده های سلولی HEK293T که پروتئین خاصی را بیان می کند و نمونه های بالینی DNA با دو جهش مجزا در اگزون هایی که معمولا در افراد مبتلا به

شکل ۷: کریسپر چیپ تشخیص ژن را در کمتر از ۱۵ دقیقه امکان پذیر می کند. کریسپر چیپ از توانایی هدف گیری ژن توسط Cas9-CRISPR و حساسیت gFET برای شناسایی سریع یک هدف ژنی از کل نمونه ژنومی بدون تکثیر استفاده می کند [۳۰].

شکل ۸: تصویر استفاده از کریسپر چیپ جهت تشخیص SNP ها که برای تعیین هویت و جرم‌شناسی می‌تواند مورد استفاده قرار گیرد [۲۷].

ژنتیکی مبتنی بر جهش‌های نقطه‌ای با استفاده از یک قطره خون بیمار، از نکات بالینی و جنایی استفاده از کریسپر چیپ است.

تشکر و قدردانی. مطالعات فوق در پژوهشکده علوم و فناوری زیستی دانشگاه صنعتی مالک اشتر انجام گرفت. از این رو، از رزمات مسئولین این دانشگاه، قدردانی می‌شود.

سهم نویسندها. ارائه ایده و طراحی مقاله، مهدی زین الدینی؛ جمع‌آوری داده و تجزیه و تحلیل آنها، مهدی زین الدینی؛ زهرا مردشتی و فرمان جمال محمدی. همه نویسندها در نگارش اولیه مقاله و بازنگری آن سهیم بودند و همه با تأیید نهایی مقاله حاضر، مسئولیت دقت و صحت مطالب مندرج در آن را می‌پذیرند.

تعارض منافع. بدین وسیله نویسندها مقاله تصویری منمایند که هیچ‌گونه تعارض منافعی در قبال مطالعه حاضر وجود ندارد.

منابع مالی. این مقاله هیچ‌گونه حمایت مالی نداشت.

References

1. De Leo AN. The Code Breaker: Jennifer Doudna, Gene editing, and the future of the human race. *Pract Radiat Oncol.* 2022;12(4):251-2. doi: 10.1016/j.prro.2022.02.014
2. Li T, Hu R, Xia J, Xu Z, Chen D, Xi J, et al. G-triplex: A new type of CRISPR-Cas12a reporter enabling highly sensitive nucleic acid detection. *Biosens Bioelectron.* 2021;187:113292. doi: 10.1016/j.bios.2021.113292
3. Zeinoddini M. Genome-based Detection of Novel Coronavirus: An Overview Study. *Journal of Inflammatory Diseases.* 2021 May 10;25(1):51-60. doi: 10.32598/JQUMS.25.1.6
4. Doudna JA. A crack in creation: Gene editing and the unthinkable power to control. 2017;94(4). <https://doi.org/10.1086/706411>
5. Aman R, Marsic T, Sivakrishna Rao G, Mahas A, Ali Z, Alsanea M, et al. iSCAN-V2: A One-Pot RT-RPA-CRISPR/Cas12b Assay for Point-of-Care SARS-CoV-2 Detection. *Front Bioeng Biotechnol.* 2022;9:800104. doi: 10.3389/fbioe.2021.800104.
6. Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. *Science.* 2018;360(6387):439-44. doi: 10.1126/science.aaq0179.
7. Broad Agency Announcement. Detect It with Gene Editing Technologies (DIGET) [homepage on the Internet]. Biological Technologies Office. [updated: 2019 Nov 16; cited 2024 Nov 9]. HR001120S0016. <https://www.higergov.com/contract-opportunity>
8. Li Y, Man S, Ye S, Liu G, Ma L. CRISPR-Cas-based detection for food safety problems: Current status, challenges, and opportunities. *Compr Rev*

نتیجه گیری

در مجموع، از این مطالعه مروی می‌توان نتیجه گرفت که طراحی کیت‌های مبتنی بر کریسپر در تعیین هویت جنایی، امنیت زیستی و امنیت غذایی با حساسیت و اختصاصیت بالا و تشخیص هم‌زمان چند هدف، مناسب است. همچنین، پیش‌بینی می‌شود در آینده، کیت‌های تشخیصی مبتنی بر کریسپر چیپ، به عنوان یک روش میدانی و بدون نیاز به تکثیر اولیه زنوم، برای شناسایی پاتوژن‌ها در حوزه‌های زیست و سلامت و تشخیص ناهنجاری‌های ژنتیکی و تعیین هویت جنایی مورد استفاده قرار گیرد.

نکات بالینی کاربردی برای پلیس: براین اساس، طراحی سامانه‌های حسگری ساده و سیار، جهت تعیین هویت جنایی در محل جنایت، شناسایی سریع پاتوژن‌هایی که پتانسیل پاندمی را دارند و همچنین تعیین ناهنجاری‌های

Food Sci Food Saf. 2022;21(4):3770-3798. doi: 10.1111/1541-4337.13000.

9. Lee SY, Oh SW. Lateral flow biosensor based on LAMP-CRISPR/Cas12a for sensitive and visualized detection of *Salmonella* spp. *Food Control*. 2023;145:109494. doi: 10.1016/j.food-cont.2022.109494
10. Mumcu MU, Ertuğrul Uygun HD, Uygun ZO. Human Papilloma Virus-11 DNA Detection by Graphene-PAMAM Modified Impedimetric CRISPR-dCas9 Biosensor. *Electroanalysis*. 2022;34(5):830-4. Doi:10.1002/elan.202100536
11. Hu K, Yin W, Bai Y, Zhang J, Yin J, Zhu Q, Mu Y. CRISPR-Based biosensors for medical diagnosis: readout from detector-dependence detection toward Naked Eye Detection. *Biosensors (Basel)*. 2024;14(8):367. doi: 10.3390/bios14080367.
12. Zhang T, Wang X, Jiang Y, Zhang Y, Zhao S, Hu J, et al. A miniaturized RPA-CRISPR/Cas12a-based nucleic acid diagnostic platform for rapid and simple self-testing of SARS-CoV-2. *Anal Chem Acta*. 2024; 343593. <https://doi.org/10.1016/j.aca.2024.343593>
13. Ebrahimi S, Khanbabaei H, Abbasi S, Fani M, Soltani S, Zandi M, et al. CRISPR-Cas System: A promising diagnostic tool for Covid-19. *Avicenna J Med Biotechnol*. 2022;14(1):3-9. doi: 10.18502/ajmb.v14i1.8165.
14. Yang B, Shi Z, Ma Y, Wang L, Cao L, Luo J, et al. LAMP assay coupled with CRISPR/Cas12a system for portable detection of African swine fever virus. *Transbound Emerg Dis*. 2022;69(4):216-23. doi: 10.1111/tbed.14285.
15. Liu R, Ali S, Huang D, Zhang Y, Lü P, Chen Q. A Sensitive Nucleic Acid Detection platform for foodborne pathogens based on CRISPR-Cas13a system combined with polymerase Chain reaction. *Food Anal Method*. 2023;16(2):356-66. doi:10.1007/s12161-022-02419-8
16. Huang Z, Liu S, Pei X, Li S, He Y, Tong Y, et al. Fluorescence signal-readout of CRISPR/Cas biosensors for nucleic acid detection. *Biosensors (Basel)*. 2022;12(10):779. doi: 10.3390/bios12100779.
17. Wang X, Shang X, Huang X. Next-generation pathogen diagnosis with CRISPR/Cas-based detection methods. *Emerg Microbes Infect*. 2020(1):1682-1691. doi: 10.1080/22221751.2020.1793689.
18. Li Y, Qiao J, Zhao Z, Zhang Q, Zhang W, Man S, et al. A CRISPR/dCas9-enabled, on-site, visual, and bi-modal biosensing strategy for ultrasensitive and self-validating detection of foodborne pathogenic bacteria. *Food Front*. 2023;4(4):70-2080. <https://doi.org/10.1002/fft2.286>
19. Zhai S, Yang Y, Wu Y, Li J, Li Y, Wu G, et al. A visual CRISPR/dCas9-mediated enzyme-linked immunosorbent assay for nucleic acid detection with single-base specificity. *Talanta*. 2023; 257:124318. doi: 10.1016/j.talanta.2023.124318.
20. Lee S, Nam D, Park JS, Kim S, Lee ES, Cha BS, et al. Highly Efficient DNA Reporter for CRISPR/Ca-s12a-Based Specific and Sensitive Biosensor. *Biochip J*. 2022;16(4):463-470. doi: 10.1007/s13206-022-00081-0.
21. Gao S, Liu J, Li Z, Ma Y, Wang J. Sensitive detection of foodborne pathogens based on CRISPR-Cas13a. *J Food Sci*. 2021;86(6):2615-2625. doi: 10.1111/1750-3841.15745.
22. Zhu H, Liang C. CRISPR-DT: designing gRNAs for the CRISPR-Cpf1 system with improved target efficiency and specificity. *Bioinformatics*. 2019;35(16):2783-2789. doi: 10.1093/bioinformatics/bty1061.
23. Samanta D, Ebrahimi SB, Ramani N, Mirkin CA. Enhancing CRISPR-Cas-Mediated Detection of Nucleic Acid and Non-nucleic Acid Targets Using Enzyme-Labeled Reporters. *J Am Chem Soc*. 2022;144(36):16310-16315. doi: 10.1021/jacs.2c07625.
24. Chen B, Li Y, Xu F, Yang X. Powerful CRISPR-Based biosensing techniques and their integration with microfluidic platforms. *Front Bioeng Biotechnol*. 2022;10:851712. doi: 10.3389/fbioe.2022.851712.
25. Aran K, Goldsmith BR. CRISPR quality control on a chip. *Nat Rev Bioeng*. 2024 Mar;2(3):194-5. doi:10.1038/s44222-024-00159-4
26. Dugan K. Breakthrough biological technologies for national security. 2022. <https://www.darpa.mil/attachments/Breakthrough-Biological-Technologies-for-National-Security-event/20020422.pdf>
27. Balderston S, Taulbee JJ, Celaya E, Fung K, Jiao A, Smith K, et al. Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor. *Nat Biomed Eng*. 2021;5(7):713-725. doi: 10.1038/s41551-021-00706-z.
28. Wang Y, Peng Y, Li S, Han D, Ren S, Qin K, et al. The development of a fluorescence/colorimetric biosensor based on the cleavage activity of CRISPR-Cas12a for the detection of non-nucleic acid targets. *J Hazard Mater*. 2023;449:131044. doi: 10.1016/j.jhazmat.2023.131044.
29. Zhu Y, Zhang M, Guo S, Xu H, Jie Z, Tao SC. CRISPR-based diagnostics of different biomolecules from nucleic acids, proteins, and small molecules to exosomes. *Acta Biochim Biophys Sin (Shanghai)*. 2023;55(10):1539-1550. doi: 10.3724/abbs.2023134.
30. Hajian R, Balderston S, Tran T, deBoer T, Etienne J, Sandhu M, et al. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. *Nat Biomed Eng*. 2019;3(6):427-437. doi: 10.1038/s41551-019-0371-x.
31. Li B, Zhai G, Dong Y, Wang L, Ma P. Recent progress on the CRISPR/Cas system in optical biosensors. *Anal Methods*. 2024;16(6):798-816. doi: 10.1039/d3ay02147e.
32. Kumaran A, Jude Serpes N, Gupta T, James A, Sharma A, Kumar D, et al. Advancements in CRISPR-Based Biosensing for Next-Gen Point of Care Diagnostic

Application. *Biosensors (Basel)*. 2023;13(2):202. doi: 10.3390/bios13020202.

- 33. Kaminski MM, Abudayyeh OO, Gootenberg JS, Zhang F, Collins JJ. CRISPR-based diagnostics. *Nat Biomed Eng*. 2021; 5(7):643-656. doi: 10.1038/s41551-021-00760-7.
- 34. Wachholz Junior D, Kubota LT. CRISPR-based electrochemical biosensors: an alternative for point-of-care diagnostics? *Talanta*. 2024;278: 126467. doi: 10.1016/j.talanta.2024.126467.
- 35. Kostyusheva A, Brezgin S, Babin Y, Vasilyeva I, Glebe D, Kostyushev D, et al. CRISPR-Cas systems for diagnosing infectious diseases. *Methods*. 2022;203:431-46. doi: 10.1016/j.ymeth.2021.04.007.
- 36. Zeinoddini M. Reasons for the Creation of the New Coronavirus 2019 (SARS-CoV2): Natural Mutation or Genetically Laboratory Manipulation-Point of View. *J Rafsanjan Un Med Sci*. 2020;19(7):749-64. doi:10.29252/jrums.19.7.749
- 37. Lau A, Ren C, Lee LP. Critical review on where CRISPR meets molecular diagnostics. *Prog. Biomed. Eng*. 2020;3(1):012001. doi:10.1088/2516-1091/abbf5e