

ORIGINAL ARTICLE**OPEN ACCESS****The Effect of Eight Weeks of Corrective Exercises on Modifying Upper Crossed Syndrome in Police personnel**Amir Falahnezhad Mojarrad¹ PhD, Gholamreza Moradi Siassar² PhD, Mehdi Norouzi^{3*} MD¹ Department of Physical Education, Faculty of Organizational Resources, University of Applied Police Sciences Amin, Tehran, Iran.² Department of Physical Education, Faculty of Organizational Resources, University of Imam Hassan Mojtaba Police Academy, Tehran, Iran.³ Department of Sports Injury and Corrective Exercises, Faculty of Physical Education and Sports Sciences, University of Tehran, Tehran, Iran.**ABSTRACT**

AIMS: The staff and operational personnel of the police force are at risk of developing musculoskeletal disorders due to prolonged exposure to certain positions. Therefore, the purpose of this study is to examine the effect of eight weeks of corrective exercises on the improvement of Upper Crossed Syndrome among staff and operational personnel of the police force and to compare this syndrome between the two groups.

MATERIALS AND METHODS: In this applied study, which was an experimental interventional study, all 30 selected samples were classified into two groups of 15, consisting of staff and operational personnel, determined by the nature of their jobs, based on the inclusion criteria. All participants were selected through a census sampling method from individuals who visited the Hamadan Province Police Healthcare Center between March 2023 and June 2024 with complaints of cervical spine and shoulder pain. During the pre-test phase, forward head posture and rounded shoulders were assessed using photography, while increased kyphosis was measured using a flexible ruler. Participants then underwent eight weeks of selected corrective exercises. At the end of the protocol, post-test measurements were conducted in the same manner as the pre-test assessments. The dependent t-test was used for statistical analysis, and all data analyses were performed using SPSS software version 27.

FINDINGS: In this study, the staff and operational participants were studied with a mean age of 34.47 ± 3.46 and 38.67 ± 4.22 years, respectively, and a body mass index of 26.34 ± 1.81 and 23.64 ± 0.62 kg/m², respectively. The results showed that the selected corrective exercises in the staff group reduced the severity of forward head tilt ($p=0.005$), rounded shoulders ($p=0.006$), and increased kyphosis ($p=0.003$). Also, in the operational group, the corrective exercises reduced the severity of forward head tilt ($p=0.003$), rounded shoulders ($p=0.003$), and increased kyphosis ($p=0.007$).

CONCLUSION: Regular and targeted corrective exercises are effective in reducing the severity of upper cross-over syndrome and musculoskeletal pain in police personnel.

KEYWORDS: Police Officer; Musculoskeletal Disorders; Musculoskeletal Abnormalities; Rehabilitation Exercises.

How to cite this article:

Falahnezhad Mojarrad A, Moradi Siassar G, Norouzi M. *The Effect of Eight Weeks of Corrective Exercises on Modifying Upper Crossed Syndrome in Police personnel*. J Police Med. 2024;13(1):e9.

***Correspondence:**

Address: Between 15th and 16th Street, North Kargar Street, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Islamic Republic, Postal Code: 1417614411
Mail: m.norouzi3058@gmail.com

Article History:

Received: 27/06/2024
Accepted: 02/07/2024
ePublished: 10/07/2024

INTRODUCTION

Musculoskeletal disorders are a significant work-related health issue in many industrialized countries, representing a major cause of disability and absenteeism across various occupations [1]. Among these, police officers are particularly affected [2]. They face high levels of physical strain from using personal protective equipment (PPE) such as weapons, belts, and heavy vests, which increases their risk of developing musculoskeletal disorders [2, 3]. Police work often requires officers to adopt awkward postures and engage in repetitive activities, such as sitting in vehicles for extended periods [4]. Additionally, prolonged sitting at a desk and frequent computer use can lead to poor posture, contributing to musculoskeletal problems in the long term. The high prevalence of musculoskeletal issues related to police work can result in long-term absenteeism, decreased productivity, increased workload, reduced public safety, and higher medical and rehabilitation expenses for both the organization and the individual [2, 5].

In a study, musculoskeletal disorders among police forces were investigated through biomechanical studies with various loads on the joints and also through self-reported pain [6]. Police are a well-known occupational group with a high percentage of musculoskeletal disorders, and pain is often reported along with these disorders [3]. In a Swedish study, 43% of police officers and 32% of other workers reported back pain [7]. Musculoskeletal pain is often caused by repetitive strain and overwork [8]. The pain can often be mild, moderate, severe, acute, or chronic [9]. Musculoskeletal pain can occur in many different body parts, including the shoulders, arms, hands, neck, lower back, legs, and knees [10]. The upper crossed syndrome is a postural abnormality that, according to *Vladimir Janda*, leads to postural deviation (forward head posture, altered shoulder position, and increased kyphosis). This postural deviation can cause pain and musculoskeletal disorders in the head, neck, shoulders, and upper back [11].

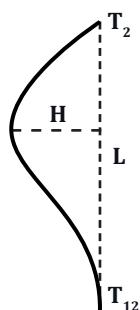
Police forces are divided into two groups: operational and headquarters, both of which were studied in this research. In the headquarters group, due to prolonged sitting, incorrect sitting posture, and repetitive use of the upper limbs, there is a possibility of muscular imbalance in the upper body. Also, the operational group repeatedly overloads its upper limbs due to wearing bulletproof vests and military equipment; therefore, they are at risk of developing a variety of musculoskeletal problems, including upper cross syndrome. In previous studies, the headquarters

and operational grouping have not been considered for the police community. Also, the effect of comprehensive exercises using tools and equipment such as foam rollers, medicine balls, bosu balls, and various types of weights has been studied [12]. In this study, an attempt was made to select exercises in a strengthening manner using stretching and stretching exercises.

Considering the aforementioned information and the importance of the physical health of police staff (operational and headquarters) for performing their duties, The present study aims to examine the effect of eight weeks of corrective exercises on improving upper crossed syndrome in administrative and operational staff of police force and to compare this syndrome between the two groups.

MATERIALS & METHODS

The present study is an applied.... research. The statistical population of this study was the staff (ICT and administrative departments) and operational (Prevention Police, Criminal Investigation Department, Emergency Units, Special Units, and Traffic Police) of police in Hamedan province in 2023. The samples were selected using the census method from official employees who had been referred to the police medical clinic in Hamedan province from March 2023 to May 2024 and had pain in the neck, upper back, and shoulders. By studying the medical records of past visitors, musculoskeletal pain associated with upper cross syndrome was investigated. The inclusion criteria for the study were male gender, service experience between 10 and 20 years, no history of surgery in the cervical spine, back, and pelvic area, no medication, and no smoking. Also, the absence of participants in more than three training sessions and the unwillingness to continue attending the study were considered exclusion criteria. In the medical history review stage and if they met the research entry criteria, a final 30 people were selected to participate in the study using the..... method. The participants were divided into two groups of 15 people: staff and operational.


Measurement of upper crossed syndrome: To accurately assess forward head posture (FHP) and rounded shoulders (RS), photography was used. This method has been applied in numerous studies and has demonstrated good repeatability [12-14]. In this technique, three anatomical landmarks—the tragus of the ear, the acromion process, and the spinous process of the seventh cervical vertebra (C7)—were first identified. The participant was then asked to stand 23 cm away from a wall. They were instructed to bend forward three times and raise their arms above their head

three times. Afterward, the participants stood in a completely relaxed and natural position, gazing at an imaginary point on the wall in front of them (eyes level with the horizon). The examiner waited for five seconds before taking three consecutive side-profile photographs. It is worth mentioning that a digital camera tripod was placed 265 cm away from the wall at shoulder height with the participants [12].

The photos were transferred to a computer, and using AutoCAD 2013 software, the angle between a line drawn from the tragus to the C7 vertebra and a vertical line (forward head angle) and the angle between a line extending from the acromion process and the vertical line (rounded shoulder angle) were measured. The average of the three angles obtained for each abnormality [15] was recorded as the target angle for forward head posture and rounded shoulders [16].

For measuring thoracic kyphosis, a flexible ruler (Staedtler Mars, 24 Inch, Nurnberg, Germany) was used. First, the second thoracic vertebra (T2) and the twelfth thoracic vertebra (T12) were identified. To locate T2, the participant was asked to bend their head forward, revealing the spinous processes of the sixth (C6) and seventh cervical vertebrae (C7). The examiner placed their index and middle fingers on these vertebrae. When the participant returned their head to a neutral position, the spinous process of C6 disappeared under the middle finger, leaving the remaining process as C7. Counting down from C7, T2 was identified. Similarly, to find the spinous process of T12, the lower edge of the twelfth rib on both sides was palpated with the thumbs. The examiner moved both fingers upward and inward until the rib disappeared under the soft tissue. The midpoint between these points was marked as the T12 spinous process.

The flexible ruler was placed on the two identified vertebrae, conforming closely to the spine, and the curvature was traced onto an A3 sheet. Using the formula ($\alpha = 4\arctan(2h/L)$), the kyphosis angle was calculated (Figure 1) [16].

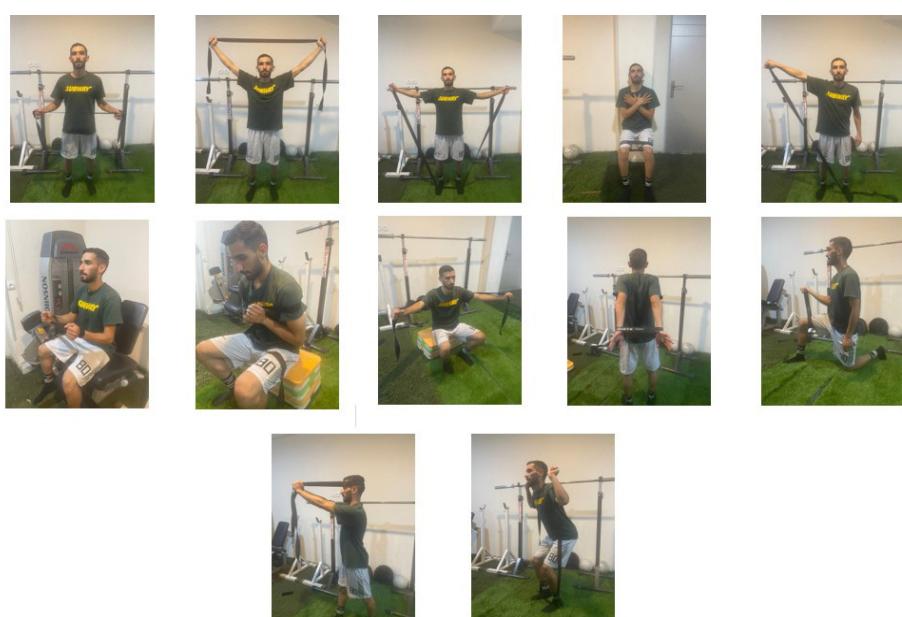
Figure 1. The method of measuring the kyphosis angle using a flexible ruler [21].

It is worth noting that forward head angles greater than 46 degrees [14], rounded shoulder angles greater than 52 degrees [14], and kyphosis angles greater than 42 degrees [17] were considered abnormal.

After being informed about the research method, the participants read and signed the consent form, and then the demographic information of the individuals (age, height, weight, service rank, service history) was recorded. All corrective exercises for each group were selected according to previous studies that had proven their effectiveness [18]. The method of selecting corrective exercises was such that it was by the work environment of the police staff (who spend most of their time in the office and working on the computer) and the operational staff (who spend most of their time in the patrol car) so that these people could perform these exercises during work and office hours and benefit from the benefits of these exercises even during office hours. It should be noted that the exercise program was carried out for eight weeks and in three sessions per week. The exercise sessions included warm-up (10 to 15 minutes), selected corrective exercise program (30 to 40 minutes), and cool-down (5 to 10 minutes). Due to the nature of their work, police staff (headquarters and operational) cannot perform corrective exercises using a variety of equipment, and this study focused on designing exercises with minimal training facilities appropriate to the work environment of these employees. All of the designed exercises were strengthening and stretching exercises because only these exercises could be performed in the work environment. A corrective exercise program improves alignment, muscle activation, and movement patterns in men with upper crossed syndrome, a program that only uses stretching and strengthening exercises [19]. Given that this study simultaneously addressed three conditions: forward head posture, increased kyphosis, and rounded shoulders (upper crossed syndrome), it was necessary to strengthen the weakened muscles in this syndrome, such as the deep neck flexors, rhomboids, middle and lower trapezius, as well as shortened muscles such as the sternocleidomastoid, upper trapezius, levator scapulae, and pectoral muscles. The selection of exercises and their execution ranged from simple to difficult. The selection of exercises and their implementation ranged from simple to difficult. **Figure 2** shows the training protocol for the headquarters group. In these exercises, the use of exercise bands was used to strengthen weakened muscles, and stretching exercises were used for shortened muscles. The exercises were selected so that they could be performed in an office

The Effect of Eight Weeks of Corrective Exercises on Modifying Upper Crossed Syndrome in Police personnel

environment. **Figure 3** shows the training protocol for the operational group. Due to the nature of the work, the operational group, who spend most of their time in cars, selected the exercises so that they could be performed in a patrol car. The scientific principles governing exercise, including exercise intensity, gradual increase, duration, and the principle of overload, were considered in the exercises; meaning that in the initial sessions, the exercises had less intensity, repetition, and time, and in subsequent sessions, the intensity of the exercises gradually increased according to the participants' abilities.


Ethical Permissions: The present study was

approved by the Research Ethics Committee of the Sports Sciences Research Institute, using the ethics code (IR.SSRC.REC.1402.282). It was also reviewed and approved by the Iranian Clinical Trials Registry, using the code (IRCT20240706062342N1).

Statistical analysis: For statistical analysis, descriptive statistics (mean and standard deviation) and inferential statistics were used. All analyses were performed using SPSS 27 software. To examine the natural distribution of data, the Shapiro-Wilk test was used. Also, to examine the within-group effect of exercises, the correlated t-test (paired t-test) was used. The effect size was calculated for each variable separately.

Figure 2. Administrative training protocol

Figure 3. Operational training protocol

FINDINGS

Data were analyzed for the staff participants with a mean age of 34.47 ± 3.46 years and a body mass index of 26.34 ± 1.81 m²/kg and the operational participants with a mean age of 38.67 ± 4.22 years and a body mass index of 23.64 ± 0.62 kg/m² (**Table 1**).

Table 1. The demographic information of the participants by study groups (Mean \pm SD).

Variables	Administrative	Operational
Age (years)	34.47 ± 3.46	38.67 ± 4.22
Weight (kg)	82.13 ± 6.85	76.53 ± 3.87
Height (cm)	176.53 ± 4.58	179.86 ± 3.54
BMI	26.34 ± 1.81	23.64 ± 0.62
History of Service (years)	12.67 ± 1.39	14.73 ± 2.63

According to the results of the paired t-test, the severity of forward head posture, rounded shoulders, and increased kyphosis was greater in the staff group than in the operational group. According to the p-value, it was determined that after eight weeks of corrective exercises, a significant difference was observed in the rate of upper crossed syndrome (forward head posture, rounded shoulders, and increased kyphosis) in both the staff and operational groups ($p \leq 0.05$; **Table 2**). The results of the paired t-test in the staff group with the syndrome showed that after participating in the selected corrective exercise program, the reduction in the forward lean angles ($p=0.005$), rounded shoulders ($p=0.006$), and increased kyphosis ($p=0.003$) was significant (**Table 2**).

Table 2. Results of paired T test

Groups	Upper crossed syndrome	Stages	Mean	Mean difference	T-Value	P-value	Effect size
Administrative with Syndrome	Forward head	Pre test	50.27	0.47	3.34	0.005	0.865
		Post test	49.80				
	Rounded shoulders	Pre test	55.40	0.17	3.21	0.006	0.831
		Post test	55.22				
	Increased kyphosis	Pre test	45.18	0.30	3.57	0.003	0.923
		Post test	44.88				
Operational with Syndrome	Forward head	Pre test	47.22	1.60	3.53	0.003	0.913
		Post test	45.62				
	Rounded shoulders	Pre test	53.24	1.60	3.65	0.003	0.943
		Post test	51.64				
	Increased kyphosis	Pre test	43.62	0.36	3.18	0.007	0.923
		Post test	43.26				

The range of changes in the reduction in the forward lean angles, rounded shoulders, and increased kyphosis in the staff group was 0.17 to 0.78 degrees, 0.05 to 0.28 degrees, and 0.11 to 0.48 degrees, respectively.

Also, the results of the paired t-test in the operational group with the syndrome showed that after participating in the selected corrective exercise program, the reduction in the forward lean angles ($p=0.003$), rounded shoulders ($p=0.003$), and increased kyphosis ($p=0.007$) was significant (**Table 2**). The range of changes in the reduction of forward head angles, rounded shoulders, and increased kyphosis in the operative group was 0.62 to 2.57 degrees, 0.66 to 2.53 degrees, and 0.11 to 0.60 degrees, respectively.

DISCUSSION

The present study aimed to investigate the effect of eight weeks of corrective exercises on the improvement of upper crossed syndrome in staff and operational employees of police and to compare this syndrome between the

two staff and operational groups. According to the results obtained, it was determined that the implementation of appropriate corrective exercises was able to reduce musculoskeletal problems caused by the work environment. This finding is consistent with previous studies including *Gera et al.* [12], *Mousavi et al.* [21], *Fayyaz Amjad et al.* [22], and the study of *Fathollahnejad, Letafatkar and Haddadnejad* [23], *Abdollahzadeh, Sohrabi et al.* [24] and *Yaghoubi Tajani et al.* [25]. The pattern of upper crossed syndrome is often seen in people who sit for a long time or people who repeatedly put a lot of overload on the upper limb [26], which was consistent with the findings of this study.

Brager described a gear mechanism for the spine in which poor sitting posture causes posterior pelvic rotation (counterclockwise movement) which reduces the natural lordosis of the lumbar spine, the natural kyphosis of the dorsal spine is exacerbated by gear-like clockwise rotation, and ultimately produces counterclockwise gear movement in the cervical vertebrae. This is the

6 The Effect of Eight Weeks of Corrective Exercises on Modifying Upper Crossed Syndrome in Police personnel

final gear that causes the forward head position in poor postures [27].

The exercise program used in this study aimed to strengthen the cervical vertebrae in these individuals with narcolepsy. Strength training increases blood flow and, consequently, increases the delivery of nutrients to the cells while stretching exercises improve and increase the range of motion of the neck and increase the elasticity of shortened ligaments and muscles [28]. Previous research has also shown that a corrective exercise program based on increasing spinal strength along with stretching exercises can reduce the incidence of narcolepsy and rounded shoulders in affected individuals [29]. This study aimed to include mostly closed kinetic chain exercises performed under weight-bearing conditions, as these exercises are more similar to daily movements [30].

Another condition that was addressed in this study and an attempt to reduce the severity of this condition was the condition of rounded shoulders. Decreased muscular balance around the shoulder is one of the important and influential factors for shoulder abnormalities and chronic pain syndromes. The muscles that keep the scapula healthy are attached to the inner edge of the scapula bone and control the position of the scapula. The trapezius, rhomboids, serratus anterior, and levator scapula muscles are the main stabilizers of the scapula. These muscles mainly control the movements of the scapula in all coordinated contractions and assist in the coupling of forces to the muscles that control the joint or movement and prevent the scapula from being in an abnormal position in these individuals and subsequently reduce the amount of shoulder angle forward [31]. The way the scapula is positioned has a direct effect on the chest, and its abnormal positioning translates into movement disorders. This biomechanical change changes the forces acting on the joint, reduces the mechanical efficiency of the muscles, and affects proprioceptive function [32]. In this study, shortened muscles were stretched and weakened muscles were strengthened to reduce the severity of round shoulders. According to general principles, corrective exercise exercises used to strengthen weakened muscles cause biomechanical displacement and return to the proper body position of the deformed parts. Also, previous studies have shown that appropriate exercises can address rounded shoulders, which can cause conditions such as rib canal narrowing, reduced lung volume, and movement disorders in the shoulder area [25]. Stretching exercises reduce muscle shortening, improve the strength and endurance of flexor muscles, stretch the upper

neck muscles, and strengthen deep neck flexors and scalene, enhancing overall shoulder posture and reducing rounded shoulders [33].

The reduction in increased kyphosis severity demonstrates the positive impact of the selected corrective exercises, aligning with the findings of Seidi et al [34]. Previous studies have used strength training to enhance extensor muscles of the spine for posture control. Such exercises have been effective in reducing increased kyphosis in individuals with upper-crossed syndrome. Strengthening spinal extensor muscles, which are crucial for maintaining posture, can reduce the severity of increased kyphosis [35]. Previous research has shown that strength training increases contractile protein, particularly myosin filaments, improves connective tissue strength, and enhances capillary density and muscle fiber count, leading to greater muscular strength and endurance. On the other hand, stretching exercises coordinate antagonist and agonist muscles [36]. In general, it seems that the use of appropriate corrective exercises not only corrects musculoskeletal problems related to the workplace but can also lead to improvements in flexibility and strength. Accordingly, the use of corrective exercises is emphasized to reduce abnormalities and improve strength and flexibility. One of the uncontrolled intervening factors in this study was the participation of some participants in sports exercises independently, which could have influenced the results. It is also suggested that injuries related to police work be addressed in a more specialized manner on a larger scale.

CONCLUSION

Corrective exercises to strengthen weakened muscles such as the deep neck flexors, rhomboids, and middle and lower trapezius, as well as stretching shortened muscles such as the sternocleidomastoid, upper trapezius, levator scapulae, and major muscles, effectively reduce the incidence of upper crossed syndrome in the headquarters and operational staff of the police.

Clinical & Practical Tips in POLICE MEDICINE: To prevent and improve upper crossed syndrome, exercise can be used to strengthen weakened muscles such as the deep neck flexors, rhomboids, middle and lower trapezius, as well as stretch shortened muscles such as the sternocleidomastoid muscles, upper trapezius, levator scapulae, and pectoralis minor and major, which was found to help reduce absenteeism due to musculoskeletal problems, especially upper crossed syndrome, in police personnel, and reduce the budget spent on the treatment and rehabilitation of these individuals. It also helps improve physical health

and increase their efficiency.

Acknowledgments: We would like to thank all participants in this study.

Authors' Contribution: Study idea and design: *Gholamreza Moradi Siasar* and *Amir Fallahnejad*; data collection: *Mehdi Norouzi*; data analysis: *Mehdi Norouzi*. All authors contributed to the initial writing and revision of the article, and all accept responsibility for the accuracy and completeness of the information contained therein with final approval of the article.

Conflict of interest: The authors stated that there is no conflict of interest in the present study.

Financial Sources: There were no financial sponsors in this article.

نشریه طب انتظامی

۶ دسترسی آزاد

مقاله اصیل

تأثیر هشت هفته تمرینات اصلاحی بر بهبود سندروم متقاطع فوقانی در کارکنان فراجا

امیر فلاحت زاد مجرد^۱, غلامرضا مرادی سیاسر^۲, مهدی نوروزی^۳^۱ گروه تربیت بدنی، دانشکده منابع سازمانی، دانشگاه جامع علوم انتظامی امین، تهران، ایران.^۲ گروه تربیت بدنی، دانشکده منابع سازمانی، دانشگاه افسری و تربیت پلیس امام حسن مجتبی، تهران، ایران.^۳ گروه آسیب‌شناسی ورزشی و حرکات اصلاحی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تهران، تهران، ایران.

چکیده

اهداف: کادر ستادی و عملیاتی فرماندهی انتظامی، به دلیل قرار گرفتن در موقعیت‌های طولانی در معرض خطر ابتلا به اختلالات اسکلتی-عضلانی هستند. بر همین اساس، هدف از مطالعه حاضر، بررسی اثر هشت هفته تمرینات اصلاحی بر میزان بهبود سندروم متقاطع فوقانی در کارکنان ستادی و عملیاتی فراجا و مقایسه این سندروم بین دو گروه ستادی و عملیاتی بود.

مواد و روش‌ها: در این مطالعه کاربردی که از نوع تجربی مداخله‌ای بود، تمامی افرادی که از فروردین‌ماه سال ۱۴۰۲ تا خردادماه سال ۱۴۰۳ با درد در ناحیه گردنی ستون فقرات و شانه‌ها، به بهداری کل فراجای استان همدان مراجعه کرده بودند، با استفاده از روش سرشماری انتخاب شدند. با توجه به معیارهای ورود، تمامی ۳۰ نمونه انتخاب شده، با توجه به ماهیت شغلی خود به دو گروه ۱۵ انفره ستادی و عملیاتی تقسیم شدند. در مرحله پیش‌آزمون، برای اندازه‌گیری سریه‌جلو و شانه‌های گرد از روش عکسبرداری و برای اندازه‌گیری کایفوز افزایشی یافته از روش خطکش منعطف استفاده شد. سپس به هشت هفته تمرینات اصلاحی منتخب (تمرینات کششی برای عضلات کوتاه شده و تمرینات قدرتی با استفاده از کشش‌های ورزشی برای تقویت عضلات ضعیف شده) پرداخته شد و در پایان اجرای پروتکل، همانند اندازه‌گیری پیش‌آزمون، اندازه‌گیری‌های پس‌آزمون به عمل آمد. در این مطالعه از آزمون تی-تیست وابسته استفاده شد. تمامی مراحل تجزیه و تحلیل آماری با استفاده از نرم‌افزار SPSS 27 انجام شد.

یافته‌ها: در این پژوهش، شرکت‌کنندگان ستادی و عملیاتی، به ترتیب با میانگین سنی ۴۶/۴۷±۳/۴۶ و ۴۷±۴/۲۲ و ۴۷±۴/۲۲ و ۴۷±۴/۲۲ سال و شاخص توده بدنی به ترتیب ۱/۸۱±۰/۲۶ و ۰/۶۴±۰/۶۲ و ۰/۶۴±۰/۲۳ کیلوگرم بر مترمربع بررسی شدند. نتایج نشان داد که تمرینات اصلاحی منتخب در گروه ستادی از شدت سریه‌جلو (p=۰/۰۰۵)، شانه‌های گرد (p=۰/۰۰۶) و کایفوز افزایشی یافته (p=۰/۰۰۳) کاسته بود. همچنین، در گروه عملیاتی تمرینات اصلاحی از شدت سریه‌جلو (p=۰/۰۰۳)، شانه‌های گرد (p=۰/۰۰۳) و کایفوز افزایشی یافته (p=۰/۰۰۷) کاسته بود.

نتیجه‌گیری: تمرینات اصلاحی منظم و هدفمند، در کاهش شدت ناهنجاری سندروم متقاطع فوقانی و دردهای اسکلتی-عضلانی در کارکنان فرماندهی انتظامی مؤثر است.

کلیدواژه‌ها: افسران پلیس، اختلالات اسکلتی‌عضلانی، تمرینات توانبخشی

تاریخچه مقاله:

دریافت: ۱۴۰۳/۰۴/۰۷
پذیرش: ۱۴۰۳/۰۴/۱۲
انتشار: ۱۴۰۳/۰۴/۲۰

نویسنده مسئول:

آدرس: ایران، تهران، خیابان کارگر شمالی دانشکده علوم ورزشی، کد پستی ۱۴۱۷۶۱۴۴۱
پست الکترونیکی: m.norouzi3058@gmail.com

نحوه استناد به مقاله:

Falahnezhad Mojarrad A, Moradi Siassar G, Norouzi M. *The Effect of Eight Weeks of Corrective Exercises on Modifying Upper Crossed Syndrome in Police personnel*. J Police Med. 2024;13(1):e9.

به هم خوردن تعادل عضلات در ناحیه فوقانی بدن، وجود دارد. همچنین، گروه عملیاتی به دلیل پوشیدن جلیقه‌های ضدگلوله و تجهیزات نظامی، اضافه بار مکرری به اندام فوقانی خود وارد می‌کنند؛ بنابراین در معرض ابتلا به انواعی از مشکلات اسکلتی-عضلانی از جمله سندروم متقاطع فوقانی هستند. در تحقیقات قبلی، گروه‌بندی ستادی و عملیاتی برای جامعه پلیس مدنظر قرار گرفته نشده است. همچنین، اثر تمرینات جامع با استفاده از ابزار و وسایلی مانند فوم رول، توب مدیسن بال، بوسبال و انواعی از وزنهای انجام شده است [۱۲] که در این مطالعه، سعی بر انتخاب تمرینات به صورت تقویتی با استفاده از کش و تمرینات کششی بود.

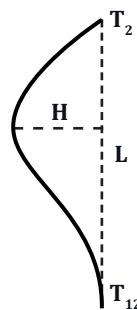
با توجه به مطالب گفته شده و اهمیت سلامت جسمانی کارکنان فرماندهی انتظامی (عملیاتی و ستادی) برای انجام وظیفه و برای پیشگیری از غیبیت‌های طولانی‌مدت کارکنان، کارکردن با درد و بازنشستگی‌های زودتر از موعده آنها، این مطالعه با هدف بررسی اثر هشت هفته تمرینات اصلاحی بر میزان بهبود سندروم متقاطع فوقانی در کارکنان ستادی و عملیاتی فراجا و مقایسه این سندروم بین دو گروه ستادی و عملیاتی انجام شد.

مواد و روش‌ها

مطالعه حاضر از نوع تحقیق تجربی مداخله‌ای و کاربردی است. جامعه آماری این تحقیق، کارکنان ستادی (رسته فاوا و رسته اداری) و عملیاتی (پلیس پیشگیری، پلیس آگاهی، یگان امداد، یگان ویژه و پلیس راهور) فراجا در استان همدان در سال ۱۴۰۲ بودند. نمونه‌ها با استفاده از روش سرشماری، از کارکنان رسمی که از فروردین ماه ۱۴۰۲ تا خرداد ۱۴۰۳ به بهداری فراجا در استان همدان مراجعه کرده بودند و دارای درد‌هایی در قسمت گردن، قسمت بالایی پشت و شانه‌ها بودند، انتخاب شدند. با مطالعه سوابق بیماری مراجعه کنندگان گذشته، به بررسی درد‌های اسکلتی-عضلانی مرتبط با سندروم متقاطع فوقانی پرداخته شد. معیارهای ورود به تحقیق، جنسیت مرد، سایه خدمتی بین ۱۰ تا ۲۰ سال، نداشتن هرگونه سابقه جراحی در قسمت ستون فقرات گردی، پشتی و ناحیه لگن، عدم مصرف دارو، عدم استعمال سیگار و دخانیات بودند. همچنین عدم حضور شرکت کنندگان بیش از سه جلسه در جلسات تمرینی و عدم تمایل به ادامه حضور در مطالعه، به عنوان معیار خروج در نظر گرفته شد.

در مرحله بررسی سوابق پزشکی و در صورت دارا بودن معیارهای ورود به تحقیق، نهایتاً تمامی ۳۳ نمونه انتخاب شد، با توجه به ماهیت شغلی به دو گروه ۵۶ انفرادی و عملیاتی تقسیم شدند.

اندازه‌گیری سندروم متقاطع فوقانی. برای بررسی دقیق زوایای سریه جلو و شانه گرد، از روش عکس‌برداری استفاده شد. از این روش در تحقیقات متعدد استفاده شده و از تکارا پذیری خوبی برخوردار است [۱۳-۱۵]. در این روش، ابتدا سه نشانه آناتومیکی تراگوس گوش، برجستگی


مقدمه

اختلالات اسکلتی-عضلانی، یکی از مشکلات عمدۀ سلامتی مربوط به کار، در بسیاری از کشورهای صنعتی است. این اختلالات، به عنوان یکی از اصلی‌ترین عوامل کاهش ظرفیت کاری و دوری از محیط کار، در بسیاری از مشاغل هستند [۱]. مشکلات اسکلتی-عضلانی، در شغل‌های مختلف از جمله حرفه پلیس، یکی از مشکلات عمدۀ سلامتی است [۲]. نیروهای عملیاتی پلیس، به دلیل استفاده از تجهیزات حفاظت فردی مانند اسلحه، کمربندهای مخصوص و جلیقه‌های سنجین، اضافه بار فیزیکی زیادی را تحمل می‌کنند که آنها را در معرض خطر ابتلا به مشکلات اسکلتی-عضلانی قرار می‌دهد [۲، ۳]. فعالیت‌هایی که معمولاً توسط اکثر افسران پلیس انجام می‌شود، مستلزم آن است که فرد در حالت‌های نامناسب ایستا و موقعیت‌های تکراری مانند نشستن در خودرو به طور طولانی‌مدت، قرار بگیرد [۴]. همچنین، در کادر ستادی پلیس، نشستن‌های طولانی‌مدت پشت میز و استفاده مکرر از کامپیوتر، سبب می‌شود این افراد در راستای نامناسب قرار گیرند که می‌تواند در طولانی‌مدت، مشکلات اسکلتی-عضلانی مختلفی را برای آنها به وجود آورد. شیوع بالای مشکلات اسکلتی-عضلانی مربوط به کار پلیس می‌تواند منجر به غیبیت‌های طولانی‌مدت، کاهش بهره‌وری، افزایش پرکاری، کاهش امنیت مردم و افزایش هزینه‌های درمانی و توانبخشی، برای سازمان و خود فرد شود [۲، ۵].

در پژوهشی، اختلالات اسکلتی-عضلانی در میان نیروهای پلیس، از طریق مطالعات بیومکانیکی با واردکردن بارهای مختلف بر مفاصل و همچنین، از طریق خودگزارشی درد، بررسی شده است [۶]. پلیس، یک گروه شغلی شناخته شده، همراه با درصد بالایی از اختلالات اسکلتی-عضلانی است که در بیشتر مواقع، همراه با این اختلالات، در هم گزارش شده است [۷]. در یک مطالعه در کشور سوئی، ۴۳ درصد از افسران پلیس و ۳۲ درصد از افراد سایر مشاغل، درد در ناحیه پشتی را گزارش کرده‌اند [۷]. دردهای اسکلتی-عضلانی، اغلب به دلیل فشارهای تکراری و پرکاری هستند [۸]. شدت درد، اغلب می‌تواند اندک، متوسط، شدید، از نوع حاد یا مزمن باشد [۹]. دردهای اسکلتی-عضلانی می‌توانند در قسمت‌های مختلفی از بدن از جمله، شانه‌ها، بازوها، دست‌ها، گردن، قسمت پایینی پشت، پاها و زانوها باشند [۱۰]. سندروم متقاطع فوقانی، یک ناهنجاری راستایی است که مطابق گفته Vladimir Janda، باعث انحراف راستا (سریه جلو، تغییر وضعیت شانه‌ها و افزایش کایفوز) می‌شود. این انحراف راستا، می‌تواند منجر به درد و اختلالات اسکلتی-عضلانی در ناحیه سر، گردن، شانه و قسمت بالایی پشت شود [۱۱].

نیروهای پلیس به دو گروه عملیاتی و ستادی تقسیم می‌شوند. دو گروه مورد مطالعه در این تحقیق نیز گروه ستادی و گروه عملیاتی فرماندهی انتظامی بودند. در گروه ستادی، به دلیل نشستن طولانی‌مدت، وضعیت غلط نشستن و استفاده تکراری از اندام‌های فوقانی، احتمال

اثبات شده بود، انتخاب شد [۱۹]. نحوه انتخاب تمرينات اصلاحی به صورتی بود که با توجه به محیط کار کارکنان ستادی (بیشتر وقت خود را در اداره و کار کردن به کامپیوتر می‌گذرانند) و عملیاتی (که بیشتر وقت خود را در ماشین گشت می‌گذرانند) باشد تا این افراد بتوانند در زمان‌های کاری و اداری به انجام این تمرينات بپردازند و از فواید این تمرينات حتی در ساعات اداری هم سود ببرند. لازم به ذکر است که برنامه تمرينی به مدت هشت هفته و به صورت سه جلسه در هفته به انجام رسید. جلسات تمرينی شامل گرم کردن (۱۰ تا ۱۵ دقیقه)، برنامه تمرينات اصلاحی منتخب (۳۰ تا ۴۰ دقیقه) و سرد کردن (۵ تا ۱۰ دقیقه) بود. با توجه به ماهیت کاری، کارکنان فرماندهی انتظامی (ستادی و عملیاتی) قابلیت انجام دادن تمرينات اصلاحی، با استفاده از وسایل متنوع را ندارند و در این مطالعه تمرکز بر آن بود که تمرينات طراحی شده، با کمترین امکانات تمرينی و متناسب با محیط کار این کارکنان باشد. تمامی تمرينات طراحی شده، از نوع تمرينات تقویتی و کششی بودند، زیرا فقط این تمرينات، قابلیت اجرا در محیط کار را داشتند. برنامه تمرينات اصلاحی، ترازبندی، فعال‌سازی عضلات و الگوی حرکتی مردان مبتلا به سندروم متقاطع فوقانی را بهبود می‌بخشد، برنامه‌ای که در آن فقط از تمرينات کششی و تقویتی استفاده شده است [۲۰].

شکل ۱) نحوه اندازه‌گیری زاویه کایفوز با استفاده از خطکش منعطف [۱۶]

با توجه به اینکه این مطالعه، هم‌زمان به سه عارضه سریجهلو، کایفوز افزایش‌یافته و شانه‌های گرد توجه داشت (سندرم متقاطع فوقانی)، لازم بود عضلات ضعیف شده در این سندرم، مانند عضلات خم‌کننده (فلکسور) عمقی گردن، متوازی‌الاضلاع، ذوزنقه میانی و تحتانی و همچنین عضلات کوتاه‌شده مانند عضلات جناغی‌چنبی‌پستانی، ذوزنقه فوقانی، بالابرزنه کتف و عضلات سینه‌ای کوچک و بزرگ تقویت شوند. انتخاب تمرينات و نحوه اجرای آنها از ساده به مشکل بود.

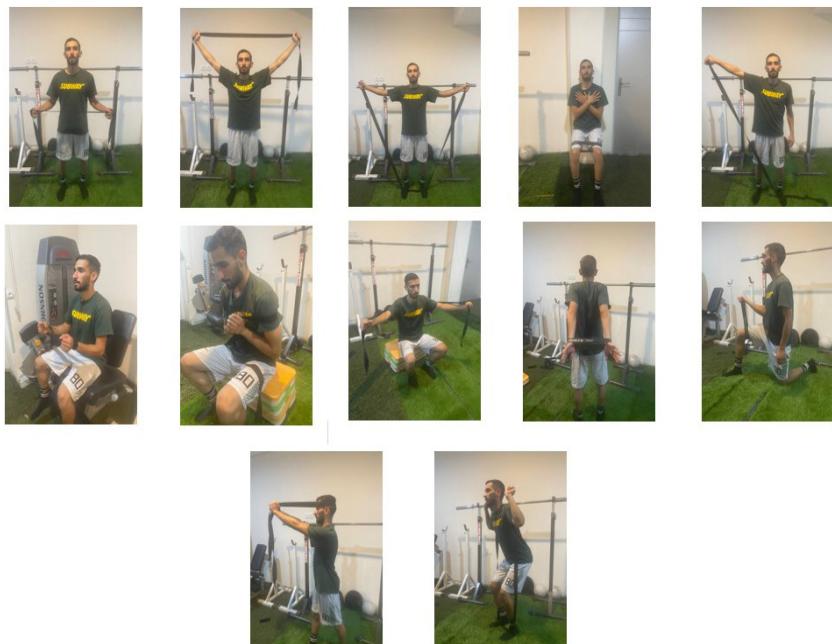
شکل ۲ پروتکل تمرينی گروه ستادی را نشان می‌دهد. در این تمرينات، با استفاده از کش‌های ورزشی به تقویت عضلات ضعیف شده پرداخته شد و از تمرينات کششی برای عضلات کوتاه‌شده استفاده شد. تمرينات به صورتی انتخاب شدند که در محیط اداره قابلیت انجام دادن داشته باشند.

شکل ۳ پروتکل تمرينی گروه عملیاتی را نشان می‌دهد.

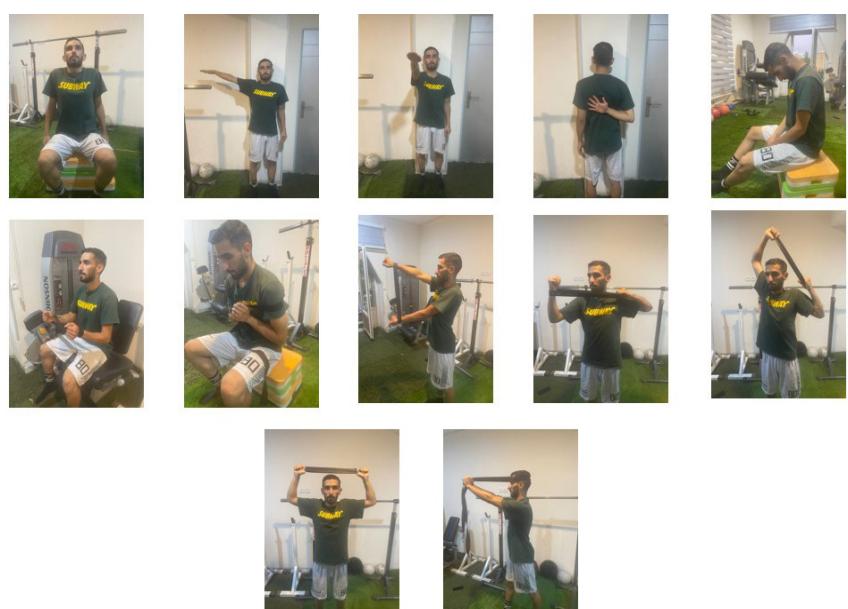
اکرومیون و زایده خاری مهره هفتمن گردنی مشخص شدند. سپس، از شرکت‌کننده خواسته شد، در فاصله ۲۳ سانتی‌متری کنار دیوار بایستد، سه مرتبه به سمت جلو خم شود و سه بار نیز دست‌هایش را بالای سر ببرد. پس از آن، به صورت کاملاً راحت و طبیعی ایستاده و نقطه‌ای فرضی را بر روی دیوار مقابل نگاه کند (چشم‌ها در راستای آفاق). آنگاه آزمونگر پس از ۵ ثانیه مکث، اقدام به سه عکس متوالی از نمای نیم‌رخ بدن کرد. لازم به ذکر است، سه پایه دوربین دیجیتال در فاصله ۲۶۵ سانتی‌متری دیوار، هم‌سطح با شانه‌های شرکت‌کننگان قرار داشت [۱۳]. با استفاده از عکس‌های گرفته‌شده، از طریق نرم‌افزار AutoCAD 2013، زاویه خط واصل، از تراگوس به مهره هفتمن گردنی با خط عمود (زاویه سریجهلو) و همچنین، زاویه بین امتداد خطی که از لندمارک زایده آکرومیون با خط عمود (زاویه شانه گرد) اندازه‌گیری شد و میانگین سه زاویه به دست آمده برای هر ناهنجاری به عنوان زاویه مورد نظر [۱۶] برای سر و شانه گرد ثبت گردید [۱۷]. همچنین برای اندازه‌گیری انحنای کایفوز سینه‌ای از خطکش منعطف (Staedtler Mars, 24 Inch, Nurnberg Germany) استفاده شد. برای این اندازه‌گیری، ابتدا مهره‌های دوم سینه‌ای و دوازدهم سینه‌ای مشخص شدند. برای پیداکردن مهره (T2)، از شرکت‌کننده خواسته شد که سر خود را به جلو خم کند، در این حالت زایده خاری دو مهره ششم و هفتمن گردنی برجسته شدند. آزمونگر دو انگشت اشاره و وسط خود را بر روی آنها گذاشت. وقتی شرکت‌کننده سر خود را به حالت صاف برگرداند، زایده خاری مهره ششم گردنی زیر انگشت وسط ناپدید شد، زایده خاری مهره باقیمانده مهره هفتم گردنی بود. از زایده خاری مهره هفتمن گردنی به پایین شمرده شد تا مهره دوم سینه‌ای مشخص شود. همچنین برای پیدا کردن زایده خاری مهره دوازدهم سینه‌ای، کناره زیرین دنده دوازدهم در دو طرف توسط انگشت شست لمس شد و سپس دو انگشت به طور همزمان و در دو طرف بدن به سمت بالا و داخل حرکت داده شد تا جایی که دنده در زیر بافت نرم ناپدید شد.

سپس فاصله دو انگشت بهم وصل و نقطه وسط آن به عنوان زایده خاری مهره دوازدهم پشتی علامت‌گذاری شد. خطکش را روی دو مهره مذکور قرار گرفت و با سمت کاملاً روی ستون فقرات قرار گرفت، سپس شکل انحنا بر روی کاغذ A3 رسم گردید و با استفاده از فرمول $(\alpha = 4 \arctan(2h/L))$ (شکل ۱) [۱۷]. لازم به ذکر است، مقادیر بیشتر از ۴۶ درجه به عنوان سریجهلو [۱۵]، مقادیر بیشتر از ۵۲ درجه به عنوان شانه‌های گرد [۱۵] و مقادیر بزرگ‌تر از ۴۲ درجه به عنوان کایفوز افزایش‌یافته [۱۸]، در نظر گرفته شد.

شرکت‌کننگان بعد از آگاهی از نحوه انجام تحقیق فرم رضاتنامه را مطالعه و امضا کردند و سپس اطلاعات دموگرافیک افراد شامل (سن، قد، وزن، رسته خدمت، سابقه خدمت) ثبت شد. تمامی تمرينات اصلاحی هر گروه، با توجه به مطالعات قبلی که میزان اثربخشی آنها


تأثیر هشت هفته تمرينات اصلاحی بر بهبود سندروم متقاطع فوقانی در کارکنان فراجا

همچنین مطالعه حاضر در مرکز ثبت کارآزمایی بالینی ایران با شناسه ۱۰۶۰۶۲۳۴۲N1 (IRCT20240706062342) مورد بررسی و تأیید قرار گرفت.


تجزیه و تحلیل آماری: برای تجزیه و تحلیل آماری، از آمار توصیفی (میانگین و انحراف استاندارد) و استنباطی استفاده شد. تمامی تجزیه و تحلیل‌ها با استفاده از نرم افزار SPSS 27 انجام شد. برای بررسی طبیعی بودن توزیع داده‌ها، از آزمون شاپیرو-ویلک استفاده شد. همچنین برای بررسی اثر درون‌گروهی تمرينات، از آزمون تی تست همبسته (تی تست زوجی) استفاده شد. اندازه‌اثر برای هر یک از متغیرها به صورت جداگانه محاسبه شد.

به دلیل ماهیت کاری، گروه عملیاتی که بیشتر وقت خود را در اتومبیل می‌گذرانند، تمرينات به صورتی انتخاب شدند که در ماشین گشتزنی قابليت انجام‌شدن داشته باشند. در تمرين‌ها اصول علمی حاکم بر تمرين شامل شدت تمرين، افزایش تدریجی، مدت و اصل اضافه‌بار در نظر گرفته شد؛ به این معنی که در جلسات اولیه تمرينات از شدت، تکرار و زمان کمتری برخوردار بودند و در جلسات بعدی با توجه به توانایی‌های شرکت‌کنندگان به تدریج شدت تمرين‌ها افزایش پیدا کرد.

ملاحظات اخلاقی: مطالعه حاضر توسط کارگروه اخلاق در پژوهش پژوهشگاه علوم ورزشی با شناسه اخلاق (IR.SSRC.REC.1402.282) مورد تأیید قرار گرفت.

شکل ۲) پروتکل تمرينی گروه ستادی

شکل ۳) پروتکل تمرينی گروه عملیاتی

ستادی بیشتر از گروه عملیاتی بود. با توجه به مقدار ۵ مشخص شد که پس از هشت هفته تمرینات اصلاحی، تفاوت معناداری در میزان سندروم متقاطع فوقانی (سریه جلو، شانه های گرد و کایفوز افزایش یافته) در هر دو گروه ستادی و عملیاتی مشاهده شد ($p=0.05$; **جدول ۲**). نتایج آزمون تی تست همبسته در گروه ستادی با سندروم نشان داد که بعد از شرکت در برنامه تمرینی اصلاحی منتخب، کاهش زوایای سریه جلو ($p=0.005$) و کایفوز افزایش یافته ($p=0.003$) معنی دار گرد ($p=0.006$) و کایفوز افزایش یافته ($p=0.007$) معنی دار بود (جدول ۲). دامنه تغییرات کاهش زوایه های سریه جلو، شانه های گرد و کایفوز افزایش یافته در گروه ستادی به ترتیب $0/17$ درجه، $0/05$ تا $0/28$ درجه و $0/11$ درجه و $0/48$ درجه بود.

همچنین، نتایج آزمون تی تست همبسته در گروه عملیاتی با سندروم نشان داد که بعد از شرکت در برنامه تمرینی اصلاحی منتخب، کاهش زوایای سریه جلو ($p=0.003$), شانه های گرد ($p=0.002$) و کایفوز افزایش یافته ($p=0.007$) معنی دار بود (جدول ۲). دامنه تغییرات کاهش زوایه های سریه جلو، شانه های گرد و کایفوز افزایش یافته در گروه عملیاتی به ترتیب $0/62$ درجه، $0/06$ تا $0/57$ درجه، $0/66$ تا $0/53$ درجه و $0/11$ تا $0/60$ درجه بود.

جدول ۲) نتایج تی تست وابسته								
اندازه اثر	p	مقدار	t	نفاوت میانگینها ± انحراف معیار	میانگین ± انحراف معیار	مرحله آزمون	سندروم متقاطع فوقانی	گروه ها
ستادی با سندروم	۰/۸۶۵	۰/۰۰۵	۳/۳۴	۰/۴۷ ± ۰/۱۶	۵۰/۲۷ ± ۰/۸۵	پیش آزمون	سریه جلو	
					۴۹/۸۰ ± ۱/۰۱	پس آزمون		
	۰/۸۳۱	۰/۰۰۶	۳/۲۱	۰/۱۷ ± ۰/۰۷	۵۵/۴۰ ± ۱/۵۱	پیش آزمون	شانه های گرد	
					۵۵/۲۲ ± ۱/۴۴	پس آزمون		
	۰/۹۲۳	۰/۰۰۳	۳/۵۷	۰/۳۰ ± ۰/۰۳	۴۵/۱۸ ± ۱/۷۲	پیش آزمون	کایفوز افزایش یافته	
					۴۴/۸۸ ± ۱/۷۵	پس آزمون		
عملیاتی با سندروم	۰/۹۱۳	۰/۰۰۴	۳/۵۳	۱/۶۰ ± ۰/۷۱	۴۷/۱۲ ± ۰/۹۶	پیش آزمون	سریه جلو	
					۴۵/۶۲ ± ۱/۶۷	پس آزمون		
	۰/۹۴۳	۰/۰۰۳	۳/۶۵	۱/۶۰ ± ۰/۷۱	۵۳/۲۴ ± ۰/۹۶	پیش آزمون	شانه های گرد	
کایفوز افزایش یافته	۰/۹۲۳	۰/۰۰۷	۳/۱۸	۰/۳۶ ± ۰/۲۱	۴۳/۶۲ ± ۰/۸۸	پیش آزمون	عملیاتی با سندروم	
					۴۳/۲۶ ± ۱/۰۹	پس آزمون		

که به صورت تکراری اضافه بار زیادی را بر اندام فوقانی وارد می کند، دیده می شود [۲۷] که با یافته این مطالعه مطابقت داشت.

سازوکار چرخ دنده ای را برای ستون فقرات این گونه توصیف شده است که وضعیت بدنی نشسته ضعیف سبب چرخش خلفی لگن می شود (حرکت چرخ دنده خلاف جهت عقریه های ساعت) و لوردوز طبیعی ستون فقرات کمری را کاهش می دهد، کایفوز طبیعی ستون فقرات پشتی با حرکت چرخ دنده، موافق چرخش عقریه های ساعت شدید می شود و درنهایت، حرکت چرخ دنده ای را در خلاف چرخش عقریه های ساعت در مهره های گردی ایجاد می کند. این چرخ دنده انتهایی است که سبب ایجاد وضعیت قرارگیری رو به جلوی سر در وضعیت های بدنی

داده های شرکت کنندگان ستادی با میانگین سنی $۲۶/۳۴ \pm ۱/۸۱$ سال و شاخص توده بدنی مترمربع به کیلوگرم و شرکت کنندگان عملیاتی با میانگین سنی $۲۳/۶۴ \pm ۰/۶۲$ سال و شاخص توده بدنی $۲۳/۶۴ \pm ۰/۶۲$ کیلوگرم بر مترمربع بررسی شدند (جدول ۱).

جدول ۱) اطلاعات دموگرافیک شرکت کنندگان به تفکیک گروه های مورد مطالعه

عملیاتی (انحراف استاندارد ± میانگین)	ستادی (انحراف استاندارد ± میانگین)	متغیرها
سن (سال)	۳۴/۴۷ ± ۳/۴۶	
وزن (کیلوگرم)	۸۲/۱۳ ± ۶/۸۵	
قد (سانتیمتر)	۱۷۶/۵۳ ± ۴/۵۸	
شاخص توده بدنی	۲۶/۳۴ ± ۱/۸۱	
سابقه خدمت (سال)	۱۲/۶۷ ± ۱/۳۹	

مطابق با نتایج تی تست همبسته، شدت عارضه های سریه جلو، شانه های گرد و کایفوز افزایش یافته در گروه

بحث

هدف از مطالعه حاضر بررسی اثر هشت هفته تمرینات اصلاحی بر میزان بهبود سندروم متقاطع فوقانی در کارکنان ستادی و عملیاتی فراجا و مقایسه این سندروم بین دو گروه ستادی و عملیاتی بود. با توجه به نتایج به دست آمده، مشخص شد که اجرای تمرینات اصلاحی مناسب توانست مشکلات اسکلتی-عضلانی ناشی از محيط کار را کاهش دهد. این یافته، با مطالعات قبلی از جمله *Gera* و همکاران [۲۲]، موسوی و همکاران [۲۱]، فیاض امجد و همکاران [۱۲]، مطالعه فتح الله نژاد، لطفات کار و حد نژاد [۲۲]، عبد الله زاده و داشمندی [۲۴]، شهرابی و همکاران [۲۵] و یعقوبی تاجانی و همکاران [۲۶] همسو است. الگوی سندروم متقاطع فوقانی، غالباً در افرادی که مدت زمان طولانی می نشینند یا افرادی

کشش قسمت بالایی عضلات پشت گردن و تقویت عضلات خمکننده عمقی گردن و نرdbانی می‌شود. این افزایش قدرت، باعث عملکرد بهتر عضلات خمکننده عمقی گردن و وضعیت شانه‌های گرد می‌شود [۳۴].

کاهش شدت کایفوز افزایش یافته، نشان‌دهنده تأثیر مثبت تمرينات اصلاحی منتخب در این مطالعه بود که با نتایج صیدی و همکاران همسو است [۳۵]. در مطالعات قبلی، از تمرينات قدرتی، جهت افزایش قدرت عضلات راست‌کننده ستون فقرات برای کنترل وضعیت بدن استفاده کرده‌اند. این نوع تمرينات، در کاهش شدت ناهنجاری کایفوز افزایش یافته، در افراد مبتلا به سندروم متقطع فوقانی، اثربخش است [۳۶]. با توجه به اینکه با تقویت عضلات راست‌کننده ستون فقرات، که یکی از عضلات کلیدی در نگهداری وضعیت بدن و قامت هستند، می‌توان از شدت ناهنجاری کایفوز افزایش یافته کم کرد [۳۶]. در مطالعات قبلی، نشان داده‌اند که تمرينات قدرتی، باعث افزایش پروتئین قابل انقباض بهوژه در تارهای میوزین، افزایش در قدرت بافت‌های همبند، تاندونی و رباطی، افزایش تعداد مویرگی در هر تار اغله و افزایش تعداد تارها و درنتیجه باعث افزایش قدرت و استقامت عضلانی می‌شود. از طرفی، تمرينات کششی به عنوان همانگکننده عضلات موفق و مخالف، عمل می‌کند [۳۷]. به طور کلی به نظر می‌رسد که استفاده از تمرينات اصلاحی مناسب، نه تنها باعث اصلاح مشکلات اسکلتی-عضلانی مرتبط با محیط کار می‌شود، بلکه می‌تواند، بهبود در انعطاف‌پذیری و قدرت رانیز در پی داشته باشد. بر همین اساس، به استفاده از تمرينات اصلاحی در جهت کاهش ناهنجاری‌ها و بهبود قدرت و انعطاف‌پذیری تأکید می‌شود.

یکی از عوامل مداخله‌گر کنترل‌نشده در این پژوهش، شرکت بعضی از شرکت‌کنندگان به صورت مستقل در تمرينات ورزشی بود که می‌تواند در نتایج تأثیرگذار باشد. همچنین پیشنهاد می‌شود در مقیاس بزرگ‌تر، به آسیب‌های مرتبط با شغل پلیس به صورت تخصصی تر پرداخته شود.

نتیجه‌گیری

تمرينات اصلاحی برای تقویت عضلات ضعیف‌شده مانند عضلات خمکننده عمقی گردن، متوازی‌الاضلاع، ذوزنقه میانی و تحتانی و همچنین کشش عضلات کوتاه‌شده مانند عضلات جناغی-چنبری-پستانی، ذوزنقه فوقانی، بالابرند کتف و عضلات سینه‌ای کوچک و بزرگ، بهطور مؤثری باعث کاهش عارضه سندروم متقطع فوقانی در کارکنان ستادی و عملیاتی فرماندهی انتظامی می‌شود.

نکات بالینی کاربردی برای پلیس: به منظور پیشگیری و بهبود سندروم متقطع فوقانی، می‌توان از تمرينات ورزشی برای تقویت عضلات ضعیف‌شده مانند عضلات خمکننده عمقی گردن، متوازی‌الاضلاع، ذوزنقه میانی و تحتانی و

ضعیف می‌شود [۲۸].

در برنامه تمرينی که در این مطالعه استفاده شد، تلاش بر این بود که عضلات خمکننده گردنی (خمکننده‌های گردنی) در این افراد که دارای عارضه سریه‌جلو بودند، تقویت شود. تمرينات قدرتی باعث افزایش خونرسانی می‌شود و متعاقب آن، رساندن مواد غذایی را به سلول‌ها افزایش می‌دهد و از سمت دیگر، تمرينات کششی باعث بهبود و افزایش دامنه حرکتی ناحیه گردن می‌شود و خاصیت کشسانی لیگامن‌تها و عضلات کوتاه‌شده را افزایش می‌دهد [۲۹]. همچنین، نتایج تحقیقات قبلی نشان داده است که برنامه حرکات اصلاحی مبتنی بر افزایش قدرت ستون فقرات به همراه تمرينات کششی، می‌تواند باعث کم‌شدن میزان عارضه سریه‌جلو و شانه‌های گرد در افراد مبتلا شود [۳۰]. در این مطالعه تلاش بر این بود که اغلب تمرينات به صورت زنجیره حرکتی بسته و در حالت تحمل وزن انجام شود، زیرا این تمرينات به حرکات روزمره‌ای که در طول شباهنگ روز انجام می‌شود، نزدیک‌تر هستند [۳۱].

عارضه دیگری که در این مطالعه به آن توجه شد و تلاش بر این بود تا بتوان از شدت این عارضه کم کرد، عارضه شانه‌های گرد بود. کاهش تعادل عضلانی در اطراف شانه، یکی از عوامل مهم و تأثیرگذار برای ناهنجاری‌های شانه و سندروم‌های درد مزمن است. عضلاتی که کتف را سالم نگه می‌دارند، به لبۀ داخلی استخوان کتف متصل می‌شوند و وضعیت کتف را کنترل می‌کنند. عضلات ذوزنقه‌ای، متوازی‌الاضلاع، دندانه‌ای قدامی و بالابرند کتف به عنوان ثبات‌دهنده‌های اصلی کتف هستند. این عضلات عمدتاً حرکات کتف در تمام انقباض‌های همانگ کمکی و جفت نیروها کنترل می‌کنند تا عضلاتی که مفصل یا حرکت را کنترل می‌کنند، جفت شوند و از قرارگیری کتف در موقعیت غیرطبیعی در این افراد جلوگیری کنند و در ادامه باعث کاهش میزان زاویه شانه‌به جلو نیز شوند [۳۲]. شیوه قرارگیری کتف، تأثیر مستقیم بر روی سینه دارد و قرارگیری غیرطبیعی آن به اختلالات حرکتی تبدیل می‌شود. این تغییر بیومکانیکی، باعث تغییر نیروی‌های وارد بر مفصل، کاهش کارایی مکانیکی عضلات می‌شود و کارکرد حسن عمقد را تحت تأثیر قرار می‌دهد [۳۳]. در این مطالعه، برای کاهش شدت شانه‌های گرد، عضلات کوتاه‌شده، تحت کشش قرار گرفتن و عضلات ضعیف‌شده، تقویت شدند. بر اساس قواعد کلی، تمرينات حرکات اصلاحی که برای تقویت عضلات ضعیف‌شده استفاده می‌شوند، باعث جایه‌جایی بیومکانیکی و بازگشت وضعیت مناسب بدنی پخش‌های تغییر شکل یافته، می‌شود. همچنین، در مطالعات قبلی نشان داده‌اند که با انجام تمرينات اصولی و مناسب، می‌توان عارضه شانه‌های گرد که عوارضی از جمله تنگی کانال ریوی و کاهش حجم ریوی و اختلالات حرکتی در ناحیه کتف دارد را بهبود بخشد [۲۶]. تمرينات کششی، کوتاه‌شده را کاهش می‌دهد، قدرت و استقامت عضلات خمکننده را بهبود می‌بخشد و سبب

نوروزی؛ تجزیه و تحلیل داده‌ها، مهدی نوروزی. همه نویسنده‌گان در نگارش اولیه مقاله و بازنگری آن سهیم بودند و همه با تأیید نهایی مقاله حاضر، مسئولیت دقت و صحبت مطالب مندرج در آن را می‌پذیرند. تعارض منافع. بدین‌وسیله نویسنده‌گان مقاله تصريح می‌نمایند که هیچ‌گونه تعارض منافعی در قبال مطالعه حاضر وجود ندارد. حامی مالی. در این مقاله هیچ‌گونه حامی مالی وجود نداشت.

Reference

1. Paudel L, Manandhar N, Joshi SK. Work-related musculoskeletal symptoms among traffic police: a review. *Int J Occupational Safe Health*. 2018;8(2):4-12. doi: <https://doi.org/10.3126/ijosh.v8i2.23330>
2. Marins EF, Andrade LS, Peixoto MB, Silva MCd. Frequency of musculoskeletal symptoms among police officers: systematic review. *BrJP*. 2020;3:164-9. doi: <https://doi.org/10.5935/2595-0118.20200034>
3. Larsen LB, Ramstrand N, Fransson EI. Psychosocial job demand and control: multi-site musculoskeletal pain in Swedish police. *Scandinavian J Public Health*. 2019;47(3):318-25. doi: <https://doi.org/10.1177/1403494818801507>
4. ZakerJafari HR, YektaKooshali MH. Work-related musculoskeletal disorders in Iranian dentists: a systematic review and meta-analysis. *Safe Health Work*. 2018;9(1):1-9. doi: <https://doi.org/10.1016/j.shaw.2017.06.006>
5. Zad SS, Patil P. Effectiveness of Janda's approach in upper cross syndrome in medical students. *Annals Romanian Soc Cell Biol*. 2021;25(6):17385-99. <http://annualsofrscb.ro/index.php/journal/article/view/9025>
6. Larsen LB, Tranberg R, Ramstrand N. Effects of thigh holster use on kinematics and kinetics of active duty police officers. *Clin Biomech*. 2016;37:77-82. doi: <https://doi.org/10.1016/j.clinbiofmech.2016.06.009>
7. Larsen LB, Andersson EE, Tranberg R, Ramstrand N. Multi-site musculoskeletal pain in Swedish police: associations with discomfort from wearing mandatory equipment and prolonged sitting. *Int Arch Occupational Environm Health*. 2018;91:425-33. doi: <https://doi.org/10.1007/s00420-018-1292-9>
8. Fiaz MW, Ahmad A, Munawar A, Rabia K, Fatima M. Prevalence of musculoskeletal pain in traffic police wardens of Lahore, Pakistan. *Rawal Med J*. 2018;43(1):61-3. <https://www.rmj.org.pk/fulltext/27-1488699809.pdf?1734421980>
9. Da Costa BR, Vieira ER. Risk factors for work-related musculoskeletal disorders: a systematic review of recent longitudinal studies. *Am J Indust Med*. 2010;53(3):285-323. doi: <https://doi.org/10.1002/ajim.20750>
10. Rahman A. Work relatedmusculoskeletal disorders among the shopkeepers: Bangladesh Health Professions Institute, Faculty of Medicine, the University. 2015. <http://library.crp-bangladesh.org:8080/xmlui/bitstream/handle/123456789/265/A.T.M.%20Hafizur%20Rahman.pdf?sequence=1&isAllowed=yr2015>
11. Seidi F, Bayattork M, Minoonejad H, Andersen LL, Page P. Comprehensive corrective exercise program improves alignment, muscle activation and movement pattern of men with upper crossed syndrome: randomized controlled trial. *Sci Report*. 2020;10(1):20688. doi: <https://doi.org/10.1038/s41598-020-77571-4>
12. Daneshmandi H, Mansore M. The effect of eight weeks comprehensive corrective exercises on upper Crossed syndrome. 40 female college students with forward head, forward shoulder, and kyphosis. *Sport Med Technol*. 2014;4(12):76-88. <file:///C:/Users/1/Desktop/Downloads/article-v12n7p75-en.pdf>
13. Ahmadi H, Yalfani A, Gandomi F. The effect of eight-week corrective exercises carried out in water on pain, neck flexors endurance and upper extremity range of motion in patient with upper crossed syndrome. *J Shahid Sadoughi Univ Med Sci*. 2019. <http://dx.doi.org/10.18502/ssu.v27i3.1193>
14. Thigpen CA, Padua DA, Michener LA, Guskiewicz K, Giuliani C, Keener JD, et al. Head and shoulder posture affect scapular mechanics and muscle activity in overhead tasks. *J Electromyograph kinesiol*. 2010;20(4):701-9. <https://doi.org/10.1016/j.jelekin.2009.12.003>
15. Harman K, Hubley-Kozey CL, Butler H. Effectiveness of an exercise program to improve forward head posture in normal adults: a randomized, controlled 10-week trial. *J Manual Manipul Ther*. 2005;13(3):163-76. doi: <https://doi.org/10.1179/106698105790824888>
16. Ahmadi H, Yalfani A, Gandomi F. Effect of eight weeks of Corrective exercises carried out in Water on Static and Semi dynamic balance on students with Upper crossed syndrome) Janda approach. *Sci J Rehabil Med*. 2020;9(3):286-96. doi: <10.22037/jrm.2020.112005.2141>
17. Lundon KM, Li AM, Bibershtain S. Interrater and

intrarater reliability in the measurement of kyphosis in postmenopausal women with osteoporosis. *Spine*. 1998;23(18):1978-85. <https://doi.org/10.1097/00007632-199809150-00013>

18. Mogharrabi-Manzari M, Ghasemi G, Negahban H. The effect of eight-week shoulder girdle, pelvic girdle and combined corrective exercises on maximal voluntary ventilation in female students with upper crossed syndrome: a randomized clinical trial. *J Rehabil Sci Res*. 2021;8(2):51-6. doi: <https://doi.org/10.30476/jrsr.2021.89863.1136>
19. Erick PN, Smith DR. A systematic review of musculoskeletal disorders among school teachers. *BMC musculoskelet Disord*. 2011;12:1-11. <https://doi.org/10.1186/1471-2474-12-260>
20. Gera C, Lamba S, Pawalia A, Panigar U. Efficacy of various exercises in the management of upper crossed syndrome. *Compare Exercise Physiol*. 2023;1:8. <https://doi.org/10.3920/CEP220039>
21. Mousavi SH, Minoonezhad H, Rajabi R, Seydi F. Comparison of the effect and follow-up of eight-week corrective exercises with and without the myofascial release on forward head and forward shoulder deformity. *Sci J Rehabil Med*. 2021;10(4):738-55. doi: 10.32598/sjrm.10.4.21
22. Amjad F, Azeem MT, Daula SA, Ijaz B. Effectiveness of McKenzie traction and exercises on neck pain secondary to upper crossed syndrome. *J Health Med Nurse*. 2020;74:55-65. https://doi.org/10.4103/jehp.jehp_239_23
23. Fathollahnejad K, Letafatkar A, Hadadnezhad M. The effect of manual therapy and stabilizing exercises on forward head and rounded shoulder postures: a six-week intervention with a one-month follow-up study. *BMC musculoskelet Disorder*. 2019;20:1-8. <https://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/s12891-019-2438-y>
24. Abdolahzadeh M, Daneshmandi H. The Effect of an 8-week NASM Corrective Exercise Program on Upper Crossed Syndrome. *Journal of Sport Biomechanics*. 2019;5(3):156-67. doi: 10.32598/biomechanics.5.3.3.
25. Sohrabi S, Rahimi M, Babaei-Mobarakeh M, Piri H. The effect of eight weeks of Iyengar yoga with an emphasis on spine and shoulder exercises on the upper cross syndrome in middle-aged women. *J Modern Rehabil*. 2020. <https://jmr.tums.ac.ir/index.php/jmr/article/view/319>
26. Yaghoubitajani Z, Gheitasi M, Bayattork M, Andersen LL. Online supervised versus workplace corrective exercises for upper crossed syndrome: a protocol for a randomized controlled trial. *Trials*. 2021;22(1):1-12. doi: <https://doi.org/10.1186/s13063-021-05875-5>
27. Mujawar JC, Sagar JH. Prevalence of upper cross syndrome in laundry workers. *Indian J Occupation Environ Med*. 2019;23(1):54-6. https://doi.org/10.4103/ijoem.IJOEM_169_18
28. Javazi F, Sedaghati P, Daneshmandi H. The Effect of Selected Corrective Exercises With Physioball on

the Posture of Female Computer Users With Upper Crossed Syndrome. *Journal of Sport Biomechanics*. 2019;5(2):112-23. doi: 10.32598/biomechanics.5.2.5.

29. Page P, Frank CC, Lardner R. Assessment and treatment of muscle imbalance. (No Title). 2010. <https://www.amazon.com/Assessment-Treatment-Muscle-Imbalance-Approach/dp/0736074007>
30. Hajhosseini E, Norasteh AA, Shamsi A, Daneshmandi H. The effect of 6 weeks strength training, stretching and comprehensive corrective exercises on forward head incorrect posture. *Modern Rehabil*. 2016;9(5):38-48. <https://mrj.tums.ac.ir/article-1-5382-en.html>
31. Oliveira AC, Silva AG. Neck muscle endurance and head posture: a comparison between adolescents with and without neck pain. *Man Ther*. 2016;22:62-7. <https://doi.org/10.1016/j.math.2015.10.002>
32. Jia B, Nussbaum MA. Influences of continuous sitting and psychosocial stress on low back kinematics, kinetics, discomfort, and localized muscle fatigue during unsupported sitting activities. *Ergonomics*. 2018;61(12):1671-84. <https://doi.org/10.1080/00140139.2018.1497815>
33. Yadegaripour M, Hadadnezhad M, Abbasi A, Eftekhari F. The study of relationship between core stability and back discomfort and muscle activity during laptop work in the sitting position. *Anesthesiol Pain*. 2019;10(2):62-74. : <https://www.researchgate.net/publication/334451266>
34. Miri H, Shahrokhi H, Dostdar Rozbani A, Nasirzadeh F. Comparison of the effect of comprehensive corrective exercises with and without posture training on upper cruciate syndrome in female students. *Med J Mashhad Univ Med Sci*. 2018;61(5). doi: 10.22038/mjms.2022.21717
35. Seidi F, RAJABI R, EBRAHIMI E, ALIZADEH MH, DANESHMANDI H. The effect of a 10-week selected corrective exercise program on postural thoracic kyphosis deformity. *Sport Sci Health Res*. 2013;5(1):5-22. doi: <https://doi.org/10.22059/jshmed.2013.32159>
36. Chandarana P, Rathod S, Sorani D. Prevalence of upper crossed syndrome in college going students—an observational study. *Int J Health Sci Res*. 2022;12(3):179-86. <http://dx.doi.org/10.52403/ijhsr.20220325>
37. Nitayarak H, Charntaraviroj P. Effects of scapular stabilization exercises on posture and muscle imbalances in women with upper crossed syndrome: A randomized controlled trial. *J Back Musculoskelet Rehabil*. 2021;34(6):1031-40. <https://doi.org/10.3233/bmr-200088>