

ORIGINAL ARTICLE**OPEN ACCESS****The Effect of Ten Weeks of Moderate Intensity Continuous Training on Serum Levels of Adipokines Related to Energy Homeostasis (Asprosin and Leptin) in Obese Women.****Maryam Salehi^{1*} PhD Candidate, Fahimeh Esfarjani¹ PhD, Sattar Gorgani Firoozjaei² PhD**¹Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Isfahan, Isfahan, Iran.²Department of Laboratory Sciences, Faculty of Paramedical Sciences, Aja University of Medical Sciences, Tehran, Iran.**ABSTRACT**

AIMS: Asprosin and leptin are two adipokines related to appetite and metabolic disorders. The present study aimed to determine the effect of ten weeks of moderate-intensity continuous training on body mass index and serum levels of leptin, asprosin, insulin, and fasting blood sugar in sedentary obese women.

MATERIALS AND METHODS: In the current semi-experimental research that was conducted on obese women in 2023 in Tehran, Iran, 24 sedentary obese women were purposefully selected and randomly divided into two groups of 12, including training and control groups. In the training group, sports intervention was performed for ten weeks and three sessions per week, and during the research, the control group did not receive sports intervention. To evaluate the investigated variables on two occasions, 24 hours before the start of training interventions and 72 hours after the last training session, fasting blood was taken. For statistical analysis, dependent t-tests and covariance analysis were used. Statistical analysis was done with SPSS 26 software and significance level ($p<0.05$).

FINDINGS: The average age and body mass index in the training group were 41.33 ± 2.74 years and 32.46 ± 2.53 kg/m², and in the control group, was 41.0 ± 3.19 years and 32.21 ± 3.48 kg/m², respectively. After the intervention period, a significant decrease in body mass index (0.951 kg/m²), asprosin (0.116 ng/ml), leptin (2.816 ng/ml), and insulin (14.34 units/l) was observed in the training group compared to the control group ($p<0.05$). However, no significant difference was observed in FBS ($p>0.05$).

CONCLUSION: According to the results, moderate-intensity continuous training with asprosin and fasting leptin modulation has positive effects on the metabolic status of sedentary obese women.

KEYWORDS: **Obesity; Exercise Training; Leptin; Insulin**

How to cite this article:

Salehi M, Esfarjani F, Gorgani Firoozjaei S. *The Effect of Ten Weeks of Moderate Intensity Continuous Training on Serum Levels of Adipokines Related to Energy Homeostasis (Asprosin and Leptin) in Obese Women.* J Police Med. 2023;12(1):e19.

***Correspondence:**

Address: Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Isfahan, Isfahan, Iran, Postal Code: 8174673441
Mail: maryamsalehi.phd@gmail.com

Article History:

Received: 24/07/2023
Accepted: 08/10/2023
ePublished: 08/11/2023

The Effect of Ten Weeks of Moderate Intensity Continuous Training on Serum Levels of Adipokines Related to Energy Homeostasis (Asprosin and Leptin) in Obese Women.

INTRODUCTION

Obesity is an abnormal or excessive increase in fat, which can negatively affect human health [1]. Obesity is a multifactorial chronic disease associated with cardiovascular complications and numerous metabolic disorders such as alcoholic fatty liver and type 2 diabetes [1, 2]. Obesity imposes a significant economic burden on patients, healthcare systems, and society through direct and indirect healthcare costs such as reduced productivity [3]. Obesity negatively affects women's health in many ways. Being overweight or obese increases the relative risk of diabetes and coronary artery disease in women. Obese women are more at risk of back pain and knee arthritis [1]. Obesity negatively affects pregnancy and fertility. Maternal obesity is associated with higher cesarean rates, as well as higher rates of high-risk obstetric diseases such as diabetes and high blood pressure. Maternal obesity hurts pregnancy outcomes (increased risk of infant mortality and malformations). It is also associated with a decrease in the desire to breastfeed, a decrease in the initiation of breastfeeding, and a decrease in the duration of breastfeeding [1]. There appears to be an association between obesity and depression in women, although cultural factors may influence this association. Obese women are more at risk of several cancers, including endometrial cancer, cervical cancer, breast cancer, and perhaps ovarian cancer [1].

As obesity is characterized as a low-grade chronic inflammatory disease, many changes occur in the cell population in the tissue, leading to cellular, paracrine, mechanical, and metabolic changes that have local and systemic effects, including cardiovascular and metabolic diseases [4]. The increase in the number of fat cells occurs through the recruitment and differentiation of adipose-derived stem cells and preadipocytes into new fat cells, thus increasing the total number of fat cells [4]. It has been hypothesized that the production of adipokines is altered by obesity and is associated with obesity-related complications [5]. Obesity-related elevation of serum leptin has been reported to cause selective dilation of microvascular structures in brain centers that regulate hemodynamic homeostasis [6]. Leptin regulates food intake, body mass, and reproductive performance and is involved in fetal growth, Proinflammatory cytokines, angiogenesis, and lipolysis. Leptin is a product of the obese gene (ob), and after synthesis and secretion from fat cells in white adipose tissue, it binds to the leptin receptor (LEP-R) and activates it. LEP-R distribution facilitates the pleiotropic effects of leptin and plays an important role in regulating body mass through a negative feedback mechanism between adipose tissue and the hypothalamus [7]. Obesity

is associated with increased proinflammatory signaling in the hypothalamus with decreased central leptin and insulin function, which leads to impaired systemic glucose tolerance [8]. Also, asprosin is a new adipokine that is classified as a protein hormone called caudamin. This adipokine is secreted from white adipose tissue during fasting and produces glucogenic and appetizing effects. Although white adipose tissue is the predominant source of this multifunctional adipokine, other tissues such as salivary glands, pancreatic B cells, and cartilage may also produce asprosin [9]. Asprosin has been reported to activate protein kinase A (PKA) in the liver, followed by the release of glucose from hepatocytes. Insulin reverses this effect by reducing PKA activity through the cyclic AMP system [10]. The cAMP-dependent PKA signaling system is widely expressed and plays a central role in regulating cellular metabolism in all organ systems affected by obesity. Neuronal PKA signaling is regulated by efferent-efferent and peripheral signals that link specific neuronal cell populations to the regulation of metabolic processes in adipose tissue, liver, pancreas, adrenal, skeletal muscle, and intestine [11]. Plasma asprosin levels are associated with glucose metabolism, lipid profile, insulin resistance, and β -cell function. They are increased under the influence of obesity and metabolic disorders such as type 2 diabetes [5]. In addition to performing glucogenic function, asprosin is an orexigenic hormone with a central effect, which can be one of the potential therapeutic targets in the treatment of obesity [12]. Also, the results of animal research have shown that obesity causes dyslipidemia, insulin resistance, and increased leptin and asprosin [13]. In this context, Mirr et al.'s research results show that asprosin is related to insulin resistance and obesity, and the serum levels of this adipokine are higher in women than in men [10]. Obesity is a chronic and relapsing disease associated with multiple complications, mortality, and significant healthcare burden [14]. On the other hand, considering the higher prevalence of obesity in women, its expected increase in the next decade, and its greater health risks in women (type 2 diabetes, infertility, and cancer), the management of obesity in women is a major concern [2]. Physical activity and training programs are an integral part of a comprehensive obesity management approach. In overweight or obese individuals, training, especially continuous training (i.e., endurance training), is associated with significant excess weight loss compared to no training [15] and can reduce obesity-related cardiometabolic complications [16, 17]. Therefore, the use of continuous training can be important as a therapeutic approach in the treatment of obesity as well as in reducing obesity-related

complications [18]. Increasing evidence suggests that improving cardiorespiratory endurance has potential neutralizing effects against the negative effects of obesity [2]. However, obesity-related studies in women often neglect to examine physiological responses to training and instead focus primarily on improving body composition and physical activity levels [16, 17]. Therefore, guidance for prescribing training as a health-promoting intervention in this population is largely provided by the male literature and does not account for biological sex differences and life events that influence training-induced responses [2]. Recent studies have shown that training is a powerful behavioral intervention to prevent and reduce obesity and other metabolic diseases. However, our understanding of the potential cellular mechanisms by which training promotes the expansion of healthy adipose tissue is in its infancy [19]. Therefore, it is necessary to conduct more research on the anti-obesity effects of training, especially on the female population. Regarding the effect of training on leptin, Poorvaghah et al., in a review study aimed at investigating the effect of high-intensity interval training (HIIT) on serum leptin levels in people with and without chronic diseases, have reported that HIIT leads to a significant decrease in serum leptin [20]. Makiel et al. also reported that 12 weeks of continuous training significantly reduced serum leptin in men with metabolic syndrome [21]. In a study, Ouerghi et al. reported that eight weeks of HIIT did not produce a significant difference in serum leptin in obese and normal men [22]. In another study, Aktaş et al. also reported that 12 weeks of HIIT did not make a significant difference in leptin in women with polycystic syndrome [23]. On the other hand, asprosin is a newer adipokine that increases appetite, unlike leptin, which has anti-appetite effects. Although these two adipokines have different effects on appetite, the levels of these two adipokines increase in obesity, which indicates the lack of physiological efficiency of these two adipokines in obesity conditions [19]. Regarding the effect of sports training on asprosin, due to the newness of this adipokine, the results of sports research on this adipokine are more limited. In this regard, the results of Qalavand et al.'s research have shown that twelve weeks of intermittent continuous training causes a significant decrease in serum asprosin and fasting blood sugar in men with type 2 diabetes [5]. Ceylan et al. also reported in their research that HIIT and moderate-intensity continuous training (MICT) caused a significant decrease in serum asprosin and fasting insulin levels in obese and normal-weight subjects, and these changes were more significant in the obese group [24]. Considering the positive effects of sports training

on the reduction of asprosin, this adaptation can be attributed to the adjustment of asprosin in adapting to the improvement of metabolism; however, no research was found that specifically examined the effects of training on leptin and asprosin in obese women.

In addition to a part of the personnel of the police which includes women working in administrative departments as well as police executive work, the family of the police staff, like other populations, may suffer from obesity and obesity-related complications due to their lifestyle. Therefore, it is important to use interventional research aimed at reducing obesity and improving impaired metabolism due to metabolic disorders.

Therefore, the present study was conducted to investigate the effect of moderate-intensity continuous training on adipokines related to obesity-related cardiometabolic complications (leptin and asprosin) in sedentary obese women.

MATERIALS & METHODS

In the present semi-experimental research, which was conducted with pre-test-post-test research with a control group in 2023, among obese women in Tehran, Iran, 24 women with obesity class 1 (body mass index 30-35 kg/m²) and were selected by purposeful sampling with a sedentary lifestyle. The research entry requirement includes the age range of 35-45 years, body mass index (BMI) in the range of 30 to 35 kg/m², not having any history of regular physical activity in the past year, and not having a history of heart diseases, orthopedics, lung diseases, diabetes, and blood pressure. After measuring the variables related to the research, the subjects were randomly divided into two groups of 12, including the MICT group and the control group. The sample size in the present research was estimated based on previous studies [5], and the formula for estimating the sample size was ten people in each group. Moreover, considering the possibility of 20% sample attrition, 12 people were considered in each group.

The training protocol in the present study was taken from Ryan et al.'s study [25]. It included ten weeks of MICT training with three sessions per week of running on a treadmill, and the control group did not receive training intervention during the research. At the beginning of the training, the samples warmed up for 5 minutes with an intensity of 65% of the maximum heart rate, followed by running continuously for 38 minutes with an intensity of 65-70% of the maximum heart rate, and at the end of the training session, they cooled down for 5 minutes, and the intensity was 65% of the maximum heart rate. MICT started in the first two weeks with 26 minutes of running at an intensity of 65% of the maximum heart rate, and from the third to the tenth week, the continuous

The Effect of Ten Weeks of Moderate Intensity Continuous Training on Serum Levels of Adipokines Related to Energy Homeostasis (Asprosin and Leptin) in Obese Women.

training time was 38 minutes. The intensity of the training was controlled using a polar heart rate. During the training, to comply with the principle of overload, the treadmill speed was adjusted every two weeks based on the samples' target heart rate, and if the heart rate was lower than the target heart rate, the treadmill speed was increased. To evaluate the studied variables 24 hours before the start of training interventions and 72 hours after the last training session, fasting blood was taken. The reason for the time interval of 72 hours after the last training session was to eliminate the acute effect of training on the research results [25]. The subjects' weight was measured with a digital scale, and the standing height of the subjects was measured standing with the heels, legs, hips, shoulders, and head leaning against the wall with a stadiometer. Body mass index was also calculated by dividing weight in kilograms by the second power of height in meters. The girth was also measured using a tape measure while exhaling. From each sample, five ccs of blood were taken from the right-hand vein by the laboratory nurse, and the laboratory expert did the analysis. Asprosin level using Human Asprosin(APS) ELISA Kit with a sensitivity of 0.1 ng/ml and leptin level using Human Leptin(LEP) ELISA Kit with a sensitivity of 0.1 ng/ml by ELISA method and with MyBioSource kits were measured. Insulin was also measured by the ELISA method using an American biosystems kit. Fasting blood sugar was measured photometrically using Pars-Azmoon kits made in Iran with a sensitivity of 5 mg/dL.

Ethical Permissions: The principles of privacy and security of samples' information were observed. In the current research, participation in the research was voluntary, and there was no compulsion to participate in the research and continue the research. All the samples had sports insurance before starting the research; No fees were charged to the samples for participating in sports programs and specialized tests. All the levels of the present research were registered and approved by the Research Ethics Committee of Isfahan University

in Iran with code IR.UI.REC.1401.118.

Statistical analysis: For statistical analysis, independent and dependent t-tests and covariance analysis were used. Statistical analysis was performed using SPSS 26 software with a significance level of $p < 0.05$.

FINDINGS

In this research, 12 samples participated in the experimental group with an average of 41.33 ± 2.74 years and a body mass index of 32.46 ± 2.53 kg/m², and 12 samples in the control group with an average of 41.0 ± 3.19 years and body mass index of 32.21 ± 3.48 kg/m² (**Table 1**). The results of the independent t-test showed that there was no significant difference in anthropometric indices (weight, height, body mass index, girth) and the age of the subjects between the two research groups ($p > 0.05$), and the samples were selected homogeneously (**Table 1**).

Table 1) Specifications related to age and anthropometry of subjects

Variable	MICT (M \pm SD)	Control (M \pm SD)	t	p
Age (years)	41.33 \pm 2.74	41.0 \pm 3.19	0.274	0.786
Height (cm)	158.08 \pm 7.09	159.084 \pm 23 \pm	-0.420	0.679
Weight (kg)	81.33 \pm 10.17	81.84 \pm 12.22	-0/109	0.914
Body mass index (Kg/m ²)	32.46 \pm 2.53	32.21 \pm 3.48	0.197	0.846
Waist girth (cm)	96.60 \pm 5.84	97.48 \pm 5.79	0.372	0.713

The dependent t-test was used to examine the intragroup changes of the investigated indicators (**Table 2**), and the results of this test showed that after the intervention period, there was a significant decrease in the levels of asprosin ($p<0.001$; $t=4.989$), leptin ($p=0.002$; $t=3.992$), insulin ($p<0.001$; $t=6.009$) and body mass index ($p<0.001$; $t=6.660$) in the training group compared to the baseline values, but no significant difference in fasting blood sugar levels ($p=0.187$; $t=1.407$) was observed in the training group ($p>0.05$). Analysis of covariance test was used in the intergroup comparison of the analyzed indicators and

Table 2) The effect of interventions on changes in asprosin, leptin, fasting blood sugar, insulin and body mass index of subjects

Variable	Group	Pre-test (M±SD)	Post-test (M±SD)	t	p	F	p	Eta score
Asprosin (nanograms per milliliter)	MICT	0.29±0.05	0.16±0.09	4.987	0.001>	8.844	0.007	0.296
	Control	0.22±0.08	0.28±0.09	-1.643	0.129			
Leptin (nanograms per milliliter)	MICT	12.55±2.63	9.40±1.11	3.992	0.002	26.762	0.001>	0.560
	Control	11.89±2.20	12.13±1.62	-0.430	0.676			
Fasting blood sugar (mg/dL)	MICT	91.33±12.67	88.42±13.13	1.407	0.187	0.501	0.487	0.023
	Control	104.25±19.05	104.92±18.04	-0.184	0.858			
Fasting insulin (unit per liter)	MICT	32.38±7.35	18.69±4.31	6.009	0.001>	49.339	0.001>	0.701
	Control	29.05±8.38	33.03±5.57	-0.174	0.265			
BMI (Kg/m ²)	MICT	32.46±2.53	31.58±2.79	6.660	0.001>	40.298	0.001>	0.657
	Control	32.21±3.48	32.28±3.41	-1.021	0.329			

the results of this test showed that the changes of asprosin ($p=0.007$; $F=8.844$; $\eta^2=0.296$), leptin ($p<0.001$; $F=26.762$; $\eta^2=0.560$), insulin ($p<0.001$; $F=49.339$; $\eta^2=0.701$) and body mass index ($p>0.001$; $F=40.298$; $\eta^2=0.657$) was significant in the training group compared to the control group, but there was no significant difference in fasting blood sugar between the two training and control groups ($p=0.487$; $F=0.501$; $\eta^2=0.023$); (**Table 2**).

DISCUSSION

The present study was conducted to determine the effect of moderate-intensity continuous training on body mass index and serum levels of leptin, asprosin, insulin, and blood sugar in sedentary obese women. The results of the research showed that after the intervention period of moderate-intensity continuous training, there was a significant decrease in the levels of asprosin (in terms of ng/ml: -0.13 in the training group versus +0.6 in the control group), leptin (in terms of ng/ml milliliter: -3.15 in the training group versus +0.24 in the control group), insulin (in units per liter: -13.9 in the training group versus +3.98 in the control group), body mass index (in units per liter: -0.88 in the training group versus +0.07 in the control group). However, the fasting blood sugar changes were insignificant (in terms of mg/dL: -2.91 in the training group versus +0.67 in the control group).

Regarding the effect of training on serum asprosin, the results of our research are in line with the findings of Qalavand et al. [5]. However, contrary to the findings of Qalavand et al., who reported a decrease in fasting blood sugar in addition to the reduction of asprosin, in this research, the changes in fasting blood sugar level were not significant. The possible cause of this inconsistency may be due to the difference in the characteristics of the subjects in the two studies because, in Qalavand's study, obese men with type 2 diabetes who have increased blood sugar levels were examined. Also, the findings of the present research are in line with the results of Ceylan et al. [24]. Ceylan et al. reported in another study that training reduces serum asprosin and fasting insulin [26]. These results are consistent with our findings regarding the reduction of asprosin and fasting insulin. Progression of adipose tissue dysfunction in metabolically unhealthy obesity occurs without a coordinated response. This dysfunction of adipose tissue causes other obesity-related complications, including insulin resistance, high blood pressure, and atherosclerosis [19]. Training has been reported to improve whole-body adipose tissue insulin sensitivity when measured via stable isotope lipid tracers (rate of apparent suppression in response to hyperinsulinemia) [27]. It has also been reported that weight loss, especially

visceral fat reduction, has positive effects on reducing insulin resistance. Reduction of insulin resistance caused by training is associated with angiogenesis and increased mitochondrial respiration of adipose tissue [19, 27]. Training increases mitochondrial volume and maintains mitochondrial respiratory function in adipose tissues; based on our knowledge, the effects of training on mitochondrial fusion and the dynamics of mitochondrial fission and autophagy in adipose tissue have not yet been fully elucidated [19]. Nevertheless, it is said that training by increasing angiogenesis and improving mitochondrial function causes the creation of healthy fat tissue [19]. Asprosin is an adipokine related to glucose metabolism that exerts a glucogenic effect to regulate glucose homeostasis through binding to OLFRL734, a G protein-coupled receptor in hepatocytes [12]. On the other hand, bioinformatic analysis shows that the FBN1 gene as a precursor of asprosin is highly expressed in mesangioblasts derived from adult skeletal muscles, osteoblast-like cells, and mesenchymal stem cells, which indicates that the skeletal-muscular system may play a role in the regulation of asprosin expression [28]. Sports training reduces insulin resistance by affecting fat tissue and creating healthy fat [19]. The increased asprosin reduction due to the increase in stored adipose tissue in adaptation to training can be attributed to the reduction of visceral fat, the creation of healthy fat, and also the reduction of insulin resistance as a metabolic adaptation due to training [28].

Another finding of this research was the reduction of leptin after the intervention period. Makiel et al. also reported decreased serum leptin consumption in patients with metabolic syndrome after twelve weeks of continuous training [21]. However, in a review by Khalafi et al., they stated that training alone is not as effective as diet or training combined with diet to reduce leptin in overweight and obese people. Also, subgroup analyses show that age, BMI, duration of intervention, type of monitoring, study quality, and degree of energy restriction are sources of heterogeneity [29]. Therefore, the reason for the difference in the results between other researchers regarding the effect of leptin can be justified to some extent. In our research, although caloric restriction was not done, training was able to reduce weight and fasting insulin. Considering leptin's relationship with body composition and insulin resistance [7], it can be justified to reduce leptin in adaptation to continuous training. Training protocols that lead to a decrease in fat mass decrease leptin concentrations. Therefore, most researchers have reported leptin concentrations after accounting for fat loss [30]. Training-induced reduction in leptin levels has been attributed to changes in energy

The Effect of Ten Weeks of Moderate Intensity Continuous Training on Serum Levels of Adipokines Related to Energy Homeostasis (Asprosin and Leptin) in Obese Women.

balance, improved insulin sensitivity, changes in lipid metabolism, and unknown factors [30]. The results of our research showed that in addition to the classical variables measured, leptin changes are associated with the reduction of asprosin as a new adipokine with different roles. On the other hand, asprosin is a newer adipokine that, unlike leptin, which has anti-appetite effects, this adipokine increases appetite. Although these two adipokines have different effects on appetite, the levels of these two adipokines increase in obesity, which indicates the lack of physiological efficiency of these two adipokines in obesity conditions [19]. The present research was conducted on obese women with a range of 35-45 years and suffering from obesity degree 1. The results may be affected by the age range (childhood, puberty, adolescence, reproductive period, and menopause) or the type of body composition (thin, normal, overweight, and obese with different degrees). Therefore, the results of this research cannot be generalized to all ages and different body types. It is suggested that in future research, similar research should be conducted in larger groups, including gender, age range, and different body composition. Also, in the current research, only the effect of training on the variables was measured; considering the role of nutrition in obesity, the calories consumed by the subjects were not measured, which was one of the limitations of the present research. Also, hormones related to body composition, such as sex hormones and thyroid function, were not measured, which was another limitation of this research.

those who participated in this research.

Conflict of interest: The authors stated that there is no conflict of interest in the present study.

Authors' Contribution: presenting the idea and design of the study, Maryam Salehi, Fahimeh Esfarjani; Data collection, Maryam Salehi, Sattar Gorgani Firouzjaei, Fahimeh Esfarjani; Data analysis, Maryam Salehi; All the authors participated in the initial writing of the article and its revision, and all accept the responsibility for the accuracy and correctness of the contents of the present article with the final approval of this article.

Financial Sources: The present study did not have any financial support. The

CONCLUSION

Ten weeks of moderate-intensity continuous training decreases leptin and asprosin as two adipokines increased with obesity, along with improving body composition and decreasing fasting insulin. These changes can be attributed to weight loss and, thus, the adjustment of adipokines.

Clinical & Practical Tips in POLICE MEDICINE:

Currently, part of the population of police personnel includes women. The families of military and police personnel may also suffer from overweight and obesity due to improper lifestyle and nutrition. Considering that the complications caused by obesity, in addition to creating a risk for women's health, because of problems related to childbirth and metabolic complications for children, it is suggested that for the prevention of obesity and its complications, the use of continuous training to reduce the metabolic complications of obesity should be included in their routine program.

Acknowledgments: This article is a part of the first author's PhD thesis. The authors thank all

نشریه طب انتظامی

۶ دسترسی آزاد

مقاله اصیل

اثر ده هفته تمرینات تداومی با شدت متوسط بر سطوح سرمی آدیپوکین‌های مرتبط با هومئوستاز انرژی (آسپروسین و لپتین) در زنان چاق

مریم صالحی^۱, PhD Candidate*, فهیمه اسفرجانی^۱, ستار گرگانی فیروزجایی^۲

^۱ گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه اصفهان، اصفهان، ایران.

^۲ گروه علوم آزمایشگاهی، دانشکده پیراپزشکی، دانشگاه علوم پزشکی ارتش، تهران، ایران.

چکیده

اهداف: آسپروسین و لپتین دو آدیپوکین مرتبط با اشتها و اختلالات متابولیک هستند. هدف تحقیق حاضر تعیین اثر ده هفته تمرینات تداومی با شدت متوسط بر شاخص توده بدن و سطوح سرمی لپتین، آسپروسین، انسولین و قند خون ناشتا در زنان چاق غیرفعال بود.

مواد و روش‌ها: تحقیق نیمه‌تجربی حاضر که در سال ۱۴۰۲ در شهر تهران روی زنان چاق انجام شد، ۲۴ زن چاق کم‌تحرک به صورت هدفمند انتخاب شدند و به صورت تصادفی به دو گروه ۱۲ انفراده شامل گروه‌های تمرین و کنترل تقسیم شدند. در گروه تمرین، مداخله ورزشی به مدت ۱۰ هفته و ۳ جلسه در هفته انجام شد و در طول دوره تحقیق، گروه کنترل مداخله ورزشی دریافت نکردند. به منظور ارزیابی متغیرهای مورد بررسی در دو نوبت، ۲۴ ساعت قبل از شروع مداخلات تمرین و ۷۲ ساعت پس از آخرین جلسه تمرین، خونگیری به صورت ناشتا انجام شد. به منظور تجزیه و تحلیل آماری از آزمون‌های تی وابسته و تحلیل کواریانس استفاده شد. تجزیه و تحلیل آماری با نرم‌افزار 26 SPSS و سطح معناداری ($p < 0.05$) انجام شد.

یافته‌ها: میانگین سن و شاخص توده بدن در گروه تمرین به ترتیب ۴۱/۳۳ \pm ۲/۷۴ سال و ۳۲/۴۶ \pm ۲/۵۳ کیلوگرم بر متر مربع و در گروه کنترل به ترتیب ۴۱/۰ \pm ۳/۱۹ سال و ۳۲/۲۱ \pm ۳/۴۸ کیلوگرم بر متر مربع بود. پس از دوره مداخلات، کاهش معناداری در شاخص توده بدنی (۰/۹۵ \pm ۰/۱۶ کیلوگرم بر متر مربع)، آسپروسین (۰/۱۶ \pm ۰/۱۶ نانوگرم بر میلی‌لیتر)، لپتین (۰/۸۱۶ \pm ۰/۳۴ نانوگرم بر میلی‌لیتر) و انسولین (۱۴/۳۴ \pm ۱/۰ واحد بر لیتر) در گروه تمرین نسبت به گروه کنترل مشاهده شد ($p < 0.05$). ولی تفاوت معناداری در FBS مشاهده نشد ($p > 0.05$).

نتیجه‌گیری: با توجه به نتایج می‌توان گفت که تمرینات تداومی با شدت متوسط با تعديل آسپروسین و لپتین ناشتا، اثرات مثبتی بر وضعیت متابولیکی زنان چاق غیرفعال دارد.

کلیدواژه‌ها: چاقی، تمرین ورزشی، لپتین، انسولین

تاریخچه مقاله:

دریافت: ۱۴۰۲/۰۵/۰۲
پذیرش: ۱۴۰۲/۰۷/۱۶
اننتشار: ۱۴۰۲/۰۸/۱۷

نویسنده مسئول:

آدرس پستی: گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه اصفهان، اصفهان، ایران.
پستی: ۸۱۷۴۶۷۳۴۴۱
پست الکترونیکی: maryamsalehi.phd@gmail.com

نحوه استناد به مقاله:

Salehi M, Esfarjani F, Gorgani Firoozjai S. *The Effect of Ten Weeks of Moderate Intensity Continuous Training on Serum Levels of Adipokines Related to Energy Homeostasis (Asprosin and Leptin) in Obese Women..* J Police Med. 2023;12(1):e19.

مقدمه

چاقی با افزایش سیگنال دهی پیش‌التهابی در هیپوتالاموس با کاهش عملکرد لپتین مرکزی و انسولین همراه است که منجر به اختلال در تحمل گلوکز سیستمیک می‌شود [۸]. همچنین آسپروسین یک آدیپوکین جدید است که به عنوان یک پروتئین هورمون کاوثودامین طبقه‌بندی می‌شود. این آدیپوکین در طول روزه‌داری از بافت چربی سفید ترشح می‌شود و اثرات گلوکوژنیک و اشتهازا را ایجاد می‌کند. اگرچه بافت چربی سفید منبع غالب این آدیپوکین چندکاره است، اما سایر بافت‌ها مانند غدد بزاقی، سلول‌های B پانکراس و غضروف نیز ممکن است آسپروسین تولید کنند [۹]. گزارش شده است که آسپروسین، پروتئین کیناز A (PKA) را در کبد فعال می‌کند و به دنبال آن گلوکز از سلول‌های کبدی آزاد می‌شود. انسولین، این اثر را با کاهش فعالیت PKA از طریق سیستم AMP حلقوی معکوس می‌کند [۱۰]. سیستم سیگنالینگ PKA وابسته به cAMP به طور گستردگی بیان می‌شود و نقش مرکزی در تنظیم متابولیسم سلولی در تمام سیستم‌های اندام تحت تأثیر چاقی دارد؛ سیگنال دهی PKA عصبی توسط سیگنال‌های واپران-آوران و محیطی تنظیم می‌شود که جمعیت سلول‌های عصبی خاص را به تنظیم فرآیندهای متابولیک در بافت چربی، کبد، پانکراس، آدرنال، ماهیچه‌های اسکلتی و روده مرتبط می‌کند [۱۱]. سطوح آسپروسین پلاسمما با متابولیسم گلوکز، پروفایل لیپیدی، مقاومت به انسولین و عملکرد سلول‌های β مرتبط است و تحت تأثیر چاقی و اختلالات متابولیکی مانند دیابت نوع دو افزایش می‌یابد [۵]. آسپروسین علاوه بر انجام عملکرد گلوکوژنیک، به عنوان یک هورمون اورکسیزینیک با اثر مرکزی است که می‌تواند یکی از اهداف درمانی بالقوه در درمان چاقی قرار گیرد [۱۲]. همچنین نتایج تحقیقات حیوانی نشان داده است که چاقی موجب دیس لیپیدمی، مقاومت به انسولین و افزایش لپتین و آسپروسین می‌شود [۱۳]. در همین زمینه نتایج تحقیق *Mirr* و همکاران نشان می‌دهد که آسپروسین در ارتباط با مقاومت به انسولین مرتبط با چاقی است و سطوح سرمه این آدیپوکین در زنان بیشتر از مردان است [۱۰].

چاقی یک بیماری مزمن و عودکننده است که با عوارض متعدد، مرگ و میر و بار مراقبت‌های بهداشتی قابل توجهی همراه است [۱۴]. از طرفی با توجه به شیوع بیشتر چاقی زنان، میزان افزایش پیش‌بینی شده آن در دهه آینده و خطرات ناشی از سلامت بیشتر آن در زنان (به عنوان مثال، دیابت نوع دو، ناباروری، سرطان)، مدیریت چاقی در زنان یک نگرانی بسیار بزرگتر است [۲]. فعالیت بدنی و برنامه‌های تمرینی ورزشی، بخشی جدایی‌ناپذیر از یک رویکرد جامع مدیریت چاقی است. در افراد دارای اضافه وزن یا چاقی، تمرینات ورزشی، به ویژه تمرینات هوایی (یعنی تمرینات استقامتی)، با کاهش وزن اضافی قابل توجهی در مقایسه با عدم تمرین همراه است [۱۵] و می‌تواند موجب کاهش عوارض کاردیومتابولیک ناشی از چاقی شود [۱۶، ۱۷].

چاقی به افزایش غیرطبیعی یا بیش از حد چربی گفته می‌شود که می‌تواند بر سلامت انسان تأثیر منفی بگذارد [۱]. چاقی یک بیماری مزمن چندعاملی است که با عوارض قلبی-عروقی و اختلالات متابولیکی متعدد مانند کبد چرب الکلی و دیابت نوع ۲ همراه است [۱، ۲]. چاقی از طریق هزینه‌های مستقیم مراقبت‌های بهداشتی و هزینه‌های غیرمستقیم مانند کاهش بهره‌وری، بار اقتصادی قابل توجهی را بر بیماران، سیستم‌های مراقبت‌های بهداشتی و جامعه تحمیل می‌کند [۳]. چاقی به طرق مختلف بر سلامت زنان تأثیر منفی می‌گذارد. اضافه وزن یا چاقی، خطر نسبی دیابت و بیماری عروق کرونر را در زنان افزایش می‌دهد. زنان چاق بیشتر در معرض خطر کمردرد و آرتروز رانو هستند [۱]. چاقی بر بارداری و باروری تأثیر منفی می‌گذارد. چاقی مادر با نرخ بالاتر سرمازی و همچنین نرخ بالاتر بیماری‌های مامایی پر خطر مانند دیابت و فشار خون بالا مرتبط است. چاقی مادر بر پیامدهای بارداری (افزایش خطر مرگ و میر نوزادان و ناهنجاری‌ها) تأثیر منفی می‌گذارد. همچنین با کاهش تمایل به شیردهی، کاهش شروع شیردهی و کاهش مدت شیردهی همراه است [۱]. به نظر می‌رسد ارتباطی بین چاقی و افسردگی در زنان وجود دارد، اگرچه عوامل فرهنگی ممکن است بر این ارتباط تأثیر بگذارد. زنان چاق بیشتر در معرض خطر ابتلا به سرطان‌های متعدد از جمله سرطان آنودومتر، سرطان دهانه رحم، سرطان سینه و شاید سرطان تخمدان هستند [۱].

با مشخص شدن چاقی به عنوان یک بیماری التهابی مزمن با درجه پایین، تغییرات زیادی در جمعیت سلولی در بافت ایجاد می‌شود که منجر به تغییرات سلولی، پاراکراین، مکانیکی و متابولیکی می‌شود که اثرات موضعی و سیستمیک از جمله بیماری‌های قلبی-عروقی و متابولیک دارند [۴]. افزایش تعداد سلول‌های چربی از طریق جذب و تمایز سلول‌های بنیادی مشتق از چربی و پره آدیپوسیت‌ها به سلول‌های چربی جدید رخ می‌دهد، بنابراین تعداد کلی سلول‌های چربی افزایش می‌یابد [۴]. فرض شده است که تولید آدیپوکین‌ها با چاقی تغییر می‌کند و با عوارض مرتبط با چاقی در ارتباط است [۵]. گزارش شده است که افزایش لپتین سرم مرتبط با چاقی باعث گسترش انتخابی ساختار عروق ریز در مراکز مغزی می‌شود که هموستانز همودینامیک را تنظیم می‌کند [۶]. لپتین، مصرف غذا، توده بدن و عملکرد تولید مثل را تنظیم می‌کند و در رشد جنین، پاسخ‌های ایمنی پیش‌التهابی، رگ‌زایی و لیپولیز نقش دارد. لپتین محصلی از زن چاق (ob) است و به دنبال سنتر و ترشح از سلول‌های چربی در بافت چربی سفید، به گیرنده لپتین (LEP-R) متصل شده و آن را فعال می‌کند. توزیع LEP-R اثرات پلیوتربوپیک لپتین را تسهیل می‌کند و نقش مهمی در تنظیم توده بدن از طریق مکانیسم بازخورد منفی بین بافت چربی و هیپوتالاموس ایفا می‌کند [۷].

کرده‌اند که HIIT و تمرینات هوایی با شدت متوسط (MICT) موجب کاهش معناداری در سطح آسپروسین سرمی و انسولین ناشتا در آزمودنی‌های با وزن چاق و نرمال می‌شود و این تغییرات در گروه چاق چشمگیرتر است [۲۴]. با توجه به اثرات مثبت تمرینات ورزشی بر کاهش آسپروسین، می‌توان این سازگاری را به تغییر آسپروسین در سازگاری با بهبود متابولیسم نسبت داد؛ با این وجود، تحقیقی که به طور خاص اثرات ورزش را بر لپتین و آسپروسین زنان چاق بررسی کرده باشد، یافت نشد.

علاوه بر بخشی از پرسنل فرماندهی انتظامی که شامل زنان شاغل در بخش‌های اداری و همچنین کارهای اجرایی انتظامی هستند، خانواده‌کارکنان فرماندهی انتظامی نیز مثل سایر جمیعت‌ها ممکن است به علت سبک زندگی، دچار چاقی و عوارض ناشی از چاقی شوند. بنابراین استفاده از تحقیقات مداخله‌ای با هدف کاهش چاقی و بهبود متابولیسم مختلف شده به علت اختلالات متابولیکی اهمیت دارد. بنابراین، پژوهش حاضر با هدف بررسی اثر تمرینات تداومی با شدت متوسط بر آدیپوکین‌های مرتبط با عوارض کاردیومتابولیک مرتبه با چاقی (لپتین و آسپروسین) در زنان چاق غیرفعال انجام شد.

مواد و روش‌ها

در تحقیق نیمه‌تجربی حاضر که با طرح تحقیق پیش‌آزمون-پس‌آزمون با گروه کنترل در سال ۱۴۰۲ انجام شد، از بین زنان چاق شهر تهران، ۲۴ زن با چاقی درجه ۱ (شاخص توده بدنی ۳۰-۳۵ کیلوگرم بر مترمربع) با سبک زندگی کم‌تحرک به روش نمونه‌گیری هدفمند انتخاب شدند. شرایط ورود به تحقیق شامل دامنه سنی ۳۵-۴۵ سال، شاخص توده بدن (BMI) در محدوده ۳۰ تا ۳۵ کیلوگرم بر متر مربع، نداشتن هیچ‌گونه سابقه فعالیت بدنی منظم در یک سال گذشته و نداشتن سابقه بیماری‌های قلبی، ارتوپدیک، بیماری‌های ریوی، دیابت و پرفساری خونی بود. پس از اندازه‌گیری متغیرهای مرتبط با تحقیق، آزمودنی‌ها به صورت تصادفی به دو گروه ۱۲ انفراده شامل گروه MICT به صورت تصادفی به دو گروه ۱۰ نفره شامل گروه HIIT و کنترل تقسیم شدند. حجم نمونه در تحقیق حاضر بر اساس مطالعات پیشین [۵] و همچنین فرمول برآورد حجم نمونه در هر گروه ۱۰ نفر برآورد شد و با توجه به احتمال ریزش ۲۰ درصدی آزمودنی‌ها، در هر گروه ۱۲ نفر در نظر گرفته شد.

پروتکل تمرین در تحقیق حاضر برگفته از تحقیق *Ryan* و همکاران [۲۵] بود و شامل ۱۰ هفته تمرین MICT با تواتر تمرین ۳ جلسه در هفته دویلن روی ترمیل بود و در طول دوره تحقیق گروه کنترل مداخله ورزشی دریافت نکرد. در ابتدای شروع تمرین، آزمودنی‌ها به مدت ۵ دقیقه به گرم‌کردن با شدت ۶۵ درصد ضربان قلب بیشینه پرداختند و به دنبال آن ۳۸ دقیقه با شدت ۶۵-۷۰ درصد ضربان قلب بیشینه به صورت تداومی دویلن و در پایان جلسه

بنابراین استفاده از تمرینات هوایی می‌تواند به عنوان یک رویکرد درمانی در درمان چاقی و همچنین کاهش عوارض مرتبط با چاقی اهمیت داشته باشد [۱۸]. شواهد فزاینده نشان می‌دهد که بهبود استقامت قلبی-تنفسی، اثرات بالقوه خنثی‌کننده‌ای در برابر اثرات منفی چاقی بیش از حد دارد [۲]. با این حال، مطالعات مرتبط با چاقی زنان اغلب از بررسی پاسخ‌های فیزیولوژیکی به ورزش غفلت می‌کنند و در عوض، در درجه اول بر بهبود ترکیب بدن و سطوح فعالیت بدنی تمرکز می‌کنند [۱۶]. بنابراین، راهنمایی برای تجویز ورزش به عنوان مداخله‌ای برای بهبود سلامت در این جمیعت عمدتاً توسط ادبیات مردانه ارائه می‌شود و تفاوت‌های بیولوژیکی جنسی و رویدادهای زندگی را که بر پاسخ‌های ناشی از ورزش تأثیر می‌گذارند، توضیح نمی‌دهد [۲]. مطالعات اخیر نشان داده‌اند که ورزش یک مداخله رفتاری قوی برای پیشگیری و کاهش چاقی و سایر بیماری‌های متابولیک مرتبط با چاقی است. با این حال، درک ما از مکانیسم‌های سلولی بالقوه ورزش که باعث گسترش بافت چربی سالم می‌شود، در مرحله ابتدایی است [۱۹]. بنابراین انجام تحقیقات بیشتری در خصوص اثرات ضد چاقی تمرینات ورزشی به خصوص روش جمیعت زنان ضرورت دارد.

در خصوص اثر تمرینات ورزشی بر لپتین، پوروقار و همکاران در یک تحقیق مروری با هدف بررسی تأثیر تمرینات تناوبی با شدت بالا (HIIT) بر سطح لپتین سرم در افراد مبتلا و بدون بیماری مزمن گزارش کرده‌اند که HIIT منجر به کاهش معنادار لپتین سرمی می‌شود [۲۰]. Makiel و همکاران نیز گزارش کرده‌اند که دوازه هفته تمرینات هوایی باعث کاهش معناداری در لپتین سرمی در مردان مبتلا به سندروم متابولیک می‌شود [۲۱]. در تحقیقی، *Ouerghi* و همکاران گزارش کرده‌اند که هشت هفته HIIT تفاوت معناداری در لپتین سرمی در مردان چاق و نرمال ایجاد نمی‌کند [۲۲]. در تحقیق دیگری، *Aktaş* و همکاران نیز گزارش کرده‌اند که ۱۲ هفته HIIT تفاوت معناداری در لپتین زنان مبتلا به سندروم پلی‌کیستیک ایجاد نمی‌کند [۲۳]. از طرف دیگر، آسپروسین، آدیپوکین جیدتری است که بر خلاف لپتین که اثرات ضد اشتهای دارد، موجب افزایش اشتها می‌شود. اگرچه این دو آدیپوکین اثرات متفاوتی بر اشتها دارند؛ با این وجود سطوح این دو آدیپوکین در چاقی افزایش می‌یابد که نشان‌دهنده عدم کارایی فیزیولوژیک این دو آدیپوکین در شرایط چاقی است [۱۹]. در خصوص اثر تمرینات ورزشی بر آسپروسین، به علت جدید بودن این آدیپوکین، نتایج تحقیقات ورزشی بر این آدیپوکین محدودتر است. در همین خصوص نتایج تحقیق *Ceylan* و همکاران نشان داده‌اند که دوازه هفته تمرینات تناوبی هوایی موجب کاهش معناداری در آسپروسین سرمی و قند خون ناشتا در مردان مبتلا به دیابت نوع دو است [۵]. و همکاران نیز در تحقیق‌شان گزارش

کواریانس استفاده شد. تجزیه و تحلیل آماری با استفاده از نرم افزار SPSS 26 با سطح معناداری $p < 0.05$ انجام شد.

یافته‌ها

در این پژوهش ۱۲ نمونه در گروه آزمایش با میانگین سن $41/33 \pm 2/74$ سال و شاخص توده بدنی $53/46 \pm 2/53$ کیلوگرم بر مترمربع و ۱۲ نمونه در گروه کنترل با میانگین سنی $41/0 \pm 3/19$ سال و شاخص توده بدنی $48/21 \pm 3/21$ کیلوگرم بر مترمربع شرکت کردند (جدول ۱). نتایج آزمون تی مستقل نشان داد که تفاوت معناداری در شاخص‌های تن‌سنجدی (وزن، قد، شاخص توده بدنی، دور کمر) و سن آزمودنی‌ها بین دو گروه تحقیق وجود نداشت ($p > 0.05$) و آزمودنی‌ها همگن انتخاب شده بودند (جدول ۱).

جدول ۱) مشخصات مربوط به سن و تن‌سنجدی آزمودنی‌ها

P	t	کنترل (M \pm SD)	MICT (M \pm SD)	متغیر
۰/۷۸۶	۰/۲۷۴	$41/0 \pm 3/19$	$41/33 \pm 2/74$	سن (سال)
۰/۶۷۹	۰/۴۲۰	$157/0 \pm 4/22$	$158/0 \pm 7/09$	قد (سانتی‌متر)
۰/۹۱۴	۰/۱۰۹	$81/84 \pm 12/22$	$81/33 \pm 10/17$	وزن (کیلوگرم)
۰/۸۴۶	۰/۱۹۷	$32/46 \pm 2/53$	$32/21 \pm 3/48$	شاخص توده بدن (Kg/m ²)
۰/۷۱۳	۰/۳۲۲	$97/48 \pm 5/79$	$96/60 \pm 5/84$	محیط دور کمر (سانتی‌متر)

در بررسی تغییرات درون‌گروهی شاخص‌های مورد بررسی، از آزمون تی وابسته استفاده شد (جدول ۲) و نتایج این آزمون نشان داد که پس از دوره مداخله، کاهش معناداری در سطوح آسپروسین ($p < 0.001$; $t = 4/989$)، لپتین ($t = 3/992$; $p = 0.002$)، انسولین ($t = 6/660$; $p < 0.001$) و شاخص توده بدنی ($t = 6/660$; $p < 0.001$) در گروه تمرین نشان داد که تغییرات معناداری در سطوح قند خون ناشتا ($t = 1/187$; $p = 0.080$) در گروه تمرین مشاهده نشد. در گروه کنترل تفاوت معناداری در هیچ‌کدام از متغیرها مشاهده نشد ($p > 0.05$). در مقایسه بین گروهی شاخص‌های مورد بررسی از آزمون تحلیل کواریانس استفاده شد و نتایج این آزمون نشان داد که تغییرات آسپروسین ($F = 8/844$; $p = 0.007$); $F = 8/296$; $p = 0.001$); $F = 26/762$; $p = 0.001$) و شاخص توده بدنی ($F = 49/339$; $p = 0.001$); $F = 0/560$; $p = 0.560$)، انسولین ($F = 40/298$; $p = 0.001$) و گروه تمرین نسبت به گروه کنترل معنادار بود ولی تفاوت معناداری در قند خون ناشتا بین دو گروه تمرین و کنترل وجود نداشت ($F = 0/487$; $p = 0.501$; $p = 0.023$; $F = 0/523$; $p = 0.523$) (جدول ۲).

بحث

مطالعه حاضر با هدف تعیین اثر تمرینات تداومی با شدت متوسط بر شاخص توده بدنی و سطوح سرمی لپتین، آسپروسین، انسولین و قند خون در زنان چاق غیرفعال انجام شد. نتایج تحقیق مانشان داد که پس از دوره مداخله تمرینات تداومی با شدت متوسط، کاهش معناداری در

تمرین نیز ۵ دقیقه سرد کردن با شدت ۶۵ درصد ضربان قلب بیشینه انجام شد. MICT در ۲ هفته اول با ۲۶ دقیقه دویدن با شدت ۶۵ درصد ضربان قلب بیشینه شروع شد و از هفته سوم تا دهم زمان تمرین تداومی، ۳۸ دقیقه بود. شدت تمرین در هین اجرا با استفاده از ضربان سنج پلار کنترل شد. در طول دوره تمرین به منظور رعایت اصل اضافه بار، هر دو هفته سرعت ترمیل بر اساس ضربان قلب هدف آزمودنی‌ها تنظیم شد و در صورت پایین‌تر بودن ضربان قلب نسبت به ضربان قلب هدف به سرعت ترمیل افزوده شد.

به منظور ارزیابی متغیرهای مورد بررسی در دو نوبت، ۲۴ ساعت قبل از شروع مداخلات تمرین و ۷۲ ساعت پس از آخرین جلسه تمرین، خونگیری به صورت ناشتا انجام شد. علت فاصله زمانی ۷۲ ساعت پس از آخرین جلسه تمرین، از بین بردن اثر حاد تمرین بر نتایج تحقیق بود؛ زیرا اثر ورزش بر مقاومت به انسولین تا ۷۲ ساعت پس از تمرین نیز گزارش شده است [۲۵]. وزن آزمودنی‌ها با ترازوی دیجیتال و قد ایستاده آزمودنی‌ها به صورت ایستاده به صورتی که پاشنه پا، ساق پا، باسن، شانه‌ها و سر به دیوار تکیه داده شده بود، با قدسنج اندازه‌گیری شد. شاخص توده بدن نیز با تقسیم وزن بر حسب کیلوگرم بر توان قد بر حسب متر محاسبه شد. محیط دور کمر نیز با استفاده از متر نواری و در هنگام بازدم اندازه‌گیری شد. از هر آزمودنی‌ها به میزان ۵ سی‌سی خون از ورید دست راست توسط پرستار آزمایشگاه گرفته شد و تجزیه و تحلیل توسط کارشناس آزمایشگاه انجام شد. سطح آسپروسین با استفاده از Human Asprosin(APS) ELISA Kit با حساسیت ۰/۰ نانوگرم بر میلی‌لیتر و سطح لپتین Human Leptin(LEP) ELISA Kit با حساسیت ۰/۰ نانوگرم بر میلی‌لیتر و سطح ایزا و با کیت‌های Mybiosource اندازه‌گیری شدند. انسولین نیز به روش ایزا و با استفاده از کیت شرکت بیوپسیستم آمریکا اندازه‌گیری شد. قند خون ناشتا به روش فتوتمتریک و با استفاده از کیت‌های شرکت پارس‌آزمون ساخت کشور ایران با حساسیت ۵ میلی‌گرم بر دسی‌لیتر اندازه‌گیری شد.

ملاحظات اخلاقی: اصول رازداری و محترمانه بودن اطلاعات آزمودنی‌ها رعایت شد؛ در تحقیق حاضر شرکت در طرح تحقیق به صورت داوطلبانه بود و هیچ‌گونه اجباری برای شرکت در طرح تحقیق و ادامه تحقیق وجود نداشت؛ تمامی آزمودنی‌ها قبل از شروع تحقیق بیمه ورزشی شدند؛ هیچ‌گونه هزینه‌ای برای شرکت در برنامه‌های ورزشی و همچنین آزمایش‌های تخصصی از آزمودنی‌ها گرفته نشد. تمامی مراحل تحقیق حاضر توسط کمیته اخلاق در IR.UI.REC.1401.118 پژوهش دانشگاه اصفهان با کد IR.UI.REC.1401.118 ثبت و تأیید شد.

تجزیه و تحلیل آماری: به منظور تجزیه و تحلیل آماری از آزمون‌های تی مستقل، تی وابسته و تحلیل

اثر ده هفته تمرينات تداومي با شدت متوسط بر سطوح سرمي آديپوكين هاي مرتبه با هومئوستاز انرژي (آسپروسيين و لپتین) در زنان چاق

جدول (۲) اثر مداخلات بر تغييرات آسپروسيين، لپتین، قند خون ناشتا، انسولين و شاخص توده بدنی آزمودنیها

متغير	گروه	پيش آزمون (M±SD)	پس آزمون (M±SD)	t	p	F	p	نمره اتا	p
آسپروسيين (نانوگرم بر ميليليت)	MICT	۰/۳۹±۰/۰۵	۰/۱۶±۰/۰۹	۴/۹۸۷	<۰/۰۰۱	۸/۸۴۴	۰/۰۰۷	۰/۲۹۶	۰/۰۰۷
	کنترل	۰/۲۲±۰/۰۸	۰/۲۸±۰/۰۹	-۱/۶۴۳	۰/۱۲۹				
لپتین (نانوگرم بر ميليليت)	MICT	۱۲/۵۵±۲/۶۳	۹/۱۴۰±۱/۱۱	۳/۹۹۲	<۰/۰۰۲	۷۶/۷۶۲	<۰/۰۰۱	۰/۵۶۰	۰/۰۰۱
	کنترل	۱۱/۸۹±۲/۲۰	۱۲/۱۳±۱/۶۲	-۰/۴۳۰	۰/۶۷۶				
قند خون ناشتا (ميلي گرم بر دسي ليتر)	MICT	۹۱/۳۳±۱۲/۶۷	۸۸/۴۲±۱۳/۱۳	۱/۴۰۷	<۰/۱۸۷	۰/۵۰۱	<۰/۰۰۱	۰/۰۲۳	۰/۰۴۸۷
	کنترل	۱۰۴/۴۲±۱۸/۰۴	۱۰۴/۹۲±۱۸/۰۵	-۰/۱۸۴	۰/۰۸۵۸				
انسولين ناشتا (واحد بر ليتر)	MICT	۳۲/۳۸±۷/۳۵	۱۸/۶۹±۴/۳۱	۶/۰۰۹	<۰/۰۰۱	۴۹/۳۴۹	<۰/۰۰۱	۰/۷۰۱	۰/۰۰۱
	کنترل	۲۹/۰۵±۸/۳۸	۳۳/۰۳±۵/۵۷	-۰/۱۷۴	۰/۰۲۶۵				
شاخص توده بدن (Kg/m ²)	MICT	۳۲/۴۶±۲/۵۳	۳۱/۵۸±۲/۷۹	۶/۶۶	<۰/۰۰۱	۴۰/۲۹۸	<۰/۰۰۱	۰/۶۵۷	۰/۰۰۱
	کنترل	۳۲/۲۸±۳/۴۱	۳۲/۲۱±۳/۴۸	-۱/۰۲۱	۰/۳۲۹				

انسولين دارد؛ کاهش مقاومت به انسولين ناشي از ورزش در ارتباط با رگزايسي و افزايش تنفس ميتوکندرياري بافت چري است [۲۷، ۱۹]. تمرين ورزشي، محتواي ميتوکندرري را افزايش ميدهد و عملکرد تنفسی ميتوکندرري را در بافت های چري حفظ ميکند؛ تا آنجا که ما مي دانيم، اثرات ورزش بر همچوسي ميتوکندرري و پويائي شکافت و اتفاچي ميتوکندرري در بافت چري هنوز به طور کامل مشخص نشده است [۱۹]. با اين وجود گفته ميشود که تمرينات ورزشي با افزايش رگزايسي و بهبود عملکرد ميتوکندرري موجب ايجاد بافت چري سالم ميشود [۱۹]. آسپروسيين يك آديپوكين مرتبه با متاپوليسيم گلوكز است که از طریق اتصال به OLFR734، يك گیرنده جفت شده با پروتئین G در سلول های کبد، يك اثر گلوكوزنیک برای تنظیم هومئوستاز گلوكز ايجاد میکند [۱۲]. از طرفی تجزیه و تحلیل بیوانفورماتیک نشان می دهد که ژن FBN1 به عنوان پیش ساز آسپروسيين به مقدار زیاد در مژوانژیوبلاست های مشتق از ماهیچه های اسکلتی انسان، سلول های شبه استئوبلاست و سلول های بنیادی مزانشیمي بیان می شود که نشان می دهد سیستم اسکلتی-غضلانی ممکن است در تنظیم بیان آسپروسيين نقش داشته باشد [۲۸]. تمرينات ورزشي با اثر بر بافت چري و ايجاد چري سالم موجب کاهش مقاومت به انسولين ميشود [۱۹]. می توان کاهش آسپروسيين افزايش يافته به علت افزايش بافت چري ذخیره شده را در سازگاري به تمرينات ورزشي به کاهش چري احساسی و همچنین ايجاد چري سالم و همچنین کاهش مقاومت به انسولين به عنوان سازگاري متاپوليکی ناشي از تمرينات نسبت داد [۲۸].

يکي دیگر از یافته های اين تحقیق، کاهش لپتین پس از دوره مداخله بود. *Makiel* پس از دوازه هفته تمرينات هوازي، کاهش معناداري در لپتین سرمي در مردان مبتلا به سندروم متاپوليک گزارش کرده اند [۲۱]. با اين وجود در تحقیق مروری *Khalaifi* و همکاران عنوان کرده اند که ورزش به تنهایی به اندازه رژیم غذایی يا ورزش به همراه رژیم غذایی برای کاهش لپتین

سطوح آسپروسيين (برحسب نانوگرم بر ميليليت: ۰/۱۳-۰/۰ در گروه تمرين در مقابل +۰/۶ در گروه کنترل)، لپتین (برحسب نانوگرم بر ميليليت: ۳/۱۵-۰/۰ در گروه تمرين در مقابل +۰/۲۴ در گروه کنترل)، انسولين (برحسب واحد بر ليتر: ۱۳/۹-۰ در گروه تمرين در مقابل +۳/۹۸ در گروه کنترل)، شاخص توده بدن (برحسب واحد بر ليتر: ۰/۸۸-۰ در گروه تمرين در مقابل +۰/۰۷ در گروه کنترل) مشاهده شد. ولی تغييرات قند خون ناشتا معنادار نبود (برحسب ميلي گرم بر دسي ليتر: ۲/۹۱-۰ در گروه تمرين در مقابل +۰/۶۷ در گروه کنترل).

در خصوص اثر تمرين بر آسپروسيين سرمي نتایج تحقیق ما با یافته های قلاوند و همکاران [۵] همسو است. با اين وجود برخلاف یافته های قلاوند و همکاران که علاوه بر کاهش آسپروسيين، کاهش قند خون ناشتا را گزارش کرده اند، در اين تحقیق تغييرات سطح قند خون ناشتا معنادار نبود؛ علت احتمالي اين نامخوانی ممکن است به خاطر تفاوت در ویژگي آزمودنی ها در دو پژوهش باشد، چون در تحقیق قلاوند مردان چاق مبتلا به دیابت نوع ۲ مورد بررسی قرار گرفته اند که سطوح افزايش يافته قند خون دارند. همچنین یافته های تحقیق حاضر با نتایج تحقیق *Ceylan* و همکاران [۲۴] همسو است. همکاران در تحقیق دیگر گزارش کرده اند که تمرينات همکاران در تحقیق آسپروسيين سرمي و انسولين ناشتا ورزشي موجب کاهش آسپروسيين سرمي و انسولين ناشتا می شود [۲۶]. اين نتایج با یافته های ما در خصوص کاهش آسپروسيين و انسولين ناشتا همخوانی دارد. پیشرفت اختلال عملکرد بافت چري در چاقی متاپوليک ناسالم بدون پاسخ هماهنگی انجام می شود. اين اختلال در عملکرد بافت چري موجب سایر عوارض مرتبه با چاقی از جمله مقاومت به انسولين، فشار خون بالا و اترواسکلروز می شود [۱۹]. گزارش شده است که تمرينات ورزشي، حساسیت به انسولین بافت چري کل بدن را هنگامی که از طریق ردیاب های لیپیدی ایزوتوپ پایدار اندازه گیری می شوند (نرخ سرکوب ظاهر در پاسخ به هایپر انسولوینی)، بهبود می بخشد [۲۷]. همچنین گزارش شده است که کاهش وزن به خصوص کاهش چري احساسی، اثرات مثبتی بر کاهش مقاومت به

شد، با توجه به نقش تغذیه در چاقی، کالری مصرفی آزمودنی‌ها اندازه‌گیری نشد که از محدودیت‌های تحقیق حاضر بود. همچنین هورمون‌های مرتبط با ترکیب بدنسی مانند هورمون‌های جنسی و عملکرد تیروئید اندازه‌گیری نشد که از دیگر محدودیت‌های این تحقیق بود.

نتیجه‌گیری

د هفته تمرینات تداومی با شدت متوسط موجب کاهش لپتین و آسپروروسین به عنوان دو آدیپوکین افزایش یافته با چاقی به همراه بهبود ترکیب بدنسی و کاهش انسولین ناشتا می‌شود. این تغییرات را می‌توان به کاهش وزن و در نتیجه تعديل آدیپوکین‌ها نسبت داد.

نکات بالینی و کاربردی در طب انتظامی: در حال حاضر بخشی از جمعیت پرسنل فرماندهی انتظامی شامل زنان است، همچنین خانواده پرسنل نظامی و انتظامی نیز ممکن است به علت سبک زندگی و تغذیه نادرست مبتلا به اضافه وزن و چاقی شوند. با توجه به اینکه عوارض ناشی از چاقی علاوه بر ایجاد خطر برای سلامت زنان موجب بروز مشکلات مرتبط با زایمان و همچنین عوارض متابولیکی برای کودکان می‌شود؛ بر همین اساس پیشنهاد می‌شود که برای پیشگیری از چاقی و عوارض چاقی استفاده از تمرینات هوایی به منظور کاهش عوارض متابولیک چاقی در برنامه روتین آنها قرار گیرد.

تشکر و قدردانی: مقاله حاضر بخشی از رساله دکتری نویسنده اول است. نویسنده‌گان از تمامی کسانی که در این تحقیق همکاری کردند، تشکر می‌کنند.

تعارض منافع: بدین‌وسیله نویسنده‌گان مقاله تصريح می‌نمایند که هیچ‌گونه تعارض منافعی در قبال مطالعه حاضر وجود ندارد.

سهم نویسنده‌گان: ارائه ایده و طراحی مطالعه، مریم صالحی، فهیمه اسفرجانی؛ جمع‌آوری داده، مریم صالحی، ستار گرگانی فیروزجایی، فهیمه اسفرجانی؛ تجزیه و تحلیل داده‌ها، مریم صالحی؛ همه نویسنده‌گان در نگارش اولیه مقاله بازنگری آن سهیم بودند و همه با تأیید نهایی مقاله حاضر، مسئولیت دقت و صحبت مطالب مندرج در آن را می‌پذیرند. منابع مالی: مقاله حاضر از هیچ مؤسسه یا سازمانی تأمین

در افراد دارای اضافه وزن و چاقی مؤثر نیست. همچنین تجزیه و تحلیل‌های زیرگروهی نشان می‌دهد که سن، BMI، مدت مداخله، نوع نظارت، کیفیت مطالعه و میزان محدودیت انرژی منابع ناهمگونی هستند [۲۹]. بنابراین می‌توان علت اختلاف در نتایج بین تحقیقات دیگر در خصوص اثر بر لپتین را تا حدودی توجیه کرد. در تحقیق ما اگرچه محدودیت کالری انجام نشد، با این وجود تمرینات، توانست موجب کاهش وزن و همچنین انسولین ناشتا شود. با توجه به ارتباط لپتین با ترکیب بدنسی و همچنین مقاومت به انسولین [۷]، می‌توان کاهش لپتین را در سازگاری نسبت به تمرینات هوایی تداومی توجیه کرد. پروتکل‌های تمرین ورزشی که منجر به کاهش توده چربی می‌شود، غلظت لپتین را کاهش می‌دهد. بنابراین، اکثر محققان غلظت لپتین را پس از محسابه کاهش چربی گزارش کردند [۳۰]. کاهش سطح لپتین ناشی از تمرینات ورزشی به تغییرات در تعادل انرژی، بهبود حساسیت به انسولین، تغییر در متابولیسم لیپیدها و عوامل ناشناخته، نسبت داده شده است [۳۱]. نتایج تحقیق ما نشان داد که علاوه بر متغیرهای کلاسیک اندازه‌گیری شده، تغییرات لپتین در ارتباط با کاهش آسپروروسین به عنوان یک آدیپوکین جدید با نقش‌های متفاوت است. از طرفی دیگر آسپروروسین، آدیپوکین جدیدتری است که برخلاف لپتین که اثرات ضد اشتها ای دارد این آدیپوکین موجب افزایش اشتها می‌شود. اگرچه این دو آدیپوکین اثرات متفاوتی بر اشتها دارند، اما سطوح این دو آدیپوکین در چاقی افزایش می‌یابد که نشان‌دهنده عدم کارایی فیزیولوژیک این دو آدیپوکین در شرایط چاقی است [۱۹].

تحقیق حاضر روی زنان چاق با دامنه سنی ۴۵-۳۵ سال و مبتلا به چاقی درجه ۱ انجام شد؛ ممکن است نتایج تحت تأثیر دامنه سنی (کودکی، بلوغ، نوجوانی، دوره باروری و یائسگی) یا نوع ترکیب بدنسی (الاگر، نرمال، دارای اضافه وزن و چاقی با درجات مختلف) باشد؛ بنابراین نتایج این تحقیق قابل تعمیم به همه سنین و ترکیب بدنسی‌های متفاوت نیست. پیشنهاد می‌شود که در تحقیقات آینده تحقیق مشابهی در گروه‌های بزرگتر شامل جنسن، دامنه سنی و ترکیب بدنسی متفاوت انجام شود. همچنین در تحقیق حاضر فقط اثر تمرین بر متغیرها اندازه‌گیری

Reference

1. Kulie T, Slattengren A, Redmer J, Counts H, Eg-lash A, Schrager S. Obesity and women's health: an evidence-based review. *J Am Board Fam Med*. 2011;24(1):75-85. <https://doi.org/10.3122/jabfm.2011.01.100076>
2. Davis ME, Blake C, Perrotta C, Cunningham C, O'Donoghue G. Impact of training modes on fitness and body composition in women with obesity: A systematic review and meta-analysis. *Obesity*. 2022;30(2):300-19. <https://doi.org/10.1002/oby.23305>
3. Mohammadi F, Ghalavand A, Delaramnasab M. Effect of circuit resistance training and L-Carnitine supplementation on body composition and liver function in men with non-Alcoholic fatty liver disease. *Jundishapur J Chronic Dis Care*. 2019;8(4):e90213. <https://repository.brief-lands.com/items/29e4f47b-1dc2-487a-b49c-0116603249fb/full>
4. Johnston EK, Abbott RD. Adipose tissue paracrine-, Autocrine-, and matrix-dependent signaling during the development and progression of obesity.

اثر ده هفته تمرينات تداومی با شدت متوسط بر سطوح سرمی آدیپوکین‌های مرتبط با هوموستاز انرژی (آسپروسین و لپتین) در زنان چاق
Cells. 2023;12(3):407. <https://doi.org/10.3390/cells12030407>

5. Ghalavand A, Mohammadpour M, RahmaniGhobadi M, Motamed P, Hovsepian A. Changes in the serum levels of metabotropic biomarkers (asprosin and BDNF) in adapting to intermittent aerobic training. Ilam. 2023;31. <http://sjimu.medilam.ac.ir/article-1-7675-en.html>
6. Gruber T, Pan C, Contreras RE, Wiedemann T, Morgan DA, Skowronski AA, et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab. 2021;33(6):1155-70. e10. <https://doi.org/10.1016/j.cmet.2021.04.007>
7. Obradovic M, Sudar-Milovanovic E, Soskic S, Es-sack M, Arya S, Stewart AJ, et al. Leptin and obesity: role and clinical implication. Front Endocrinol. 2021;12:585887. <https://doi.org/10.1161/CIR-CRESAHA.107.156596>
8. Pretz D, Le Foll C, Rizwan MZ, Lutz TA, Tups A. Hyperleptinemia as a contributing factor for the impairment of glucose intolerance in obesity. FASEB. 2021;35(2):e21216. <https://doi.org/10.1096/fj.202001147r>
9. Farrag M, Ait Eldjoudi D, González-Rodríguez M, Cordero-Barreal A, Ruiz-Fernández C, Capuozzo M, et al. Asprosin in health and disease, a new glucose sensor with central and peripheral metabolic effects. Front Endocrinol. 2023;13:1101091. <https://doi.org/10.3389/fendo.2022.1101091>
10. Mirr M, Braszak-Cyberman A, Ludziejewska A, Kregielska-Narożna M, Bogdański P, Bryl W et al. Serum Asprosin Correlates with Indirect Insulin Resis Biomed. 2023;11(6):1568. <https://doi.org/10.3390/biomedicines11061568>
11. London E, Nesterova M, Sinaia N, Szarek E, Chanturiya T, Mastroyannis SA, et al. Differentially regulated protein kinase A (PKA) activity in adipose tissue and liver is associated with resistance to diet-induced obesity and glucose intolerance in mice that lack PKA regulatory subunit type II α . Endocrinology. 2014;155(9):3397-408. <https://doi.org/10.1210/en.2014-1122>
12. Duerrschnid C, He Y, Wang C, Li C, Bournat JC, Romere C, et al. Asprosin is a centrally acting orexigenic hormone. Nature Med. 2017;23(12):1444-53. <https://doi.org/10.1038%2Fnm.4432>
13. Ozcan S, Ulker N, Bulmus O, Yardimci A, Ozcan M, Canpolat S. The modulatory effects of irisin on asprosin, leptin, glucose levels and lipid profile in healthy and obese male and female rats. Arch Physiol Biochem. 2022;128(3):724-31. <https://doi.org/10.1080/13813455.2020.1722706>
14. Bergmann NC, Davies MJ, Lingvay I, Knop FK. Sema-glutide for the treatment of overweight and obesity: A review. Diabetes Obes Metabol. 2023;25(1):18-35. <https://doi.org/10.1111/dom.14863>
15. Oppert J-M, Ciangura C, Bellicha A. Physical activity and exercise for weight loss and maintenance in people living with obesity. Rev Endocr Metab Disord. 2023;1-13. <https://doi.org/10.1007/s11154-023-09805-5>
16. O'Donoghue G, Blake C, Cunningham C, Lennon O, Perrotta C. What exercise prescription is optimal to improve body composition and cardiorespiratory fitness in adults living with obesity? A network meta-analysis. Obes Rev. 2021;22(2):e13137. <https://doi.org/10.1111/obr.13137>
17. Baker A, Sirois-Leclerc H, Tulloch H. The impact of long-term physical activity interventions for overweight/obese postmenopausal women on adiposity indicators, physical capacity, and mental health outcomes: a systematic review. J Obes. 2016;2016. <https://doi.org/10.1155/2016/6169890>
18. London E, Stratakis CA. The regulation of PKA signaling in obesity and in the maintenance of metabolic health. Pharmacol Ther. 2022;237:108113. <https://doi.org/10.1016/j.pharmthera.2022.108113>
19. Meister BM, Hong S-G, Shin J, Rath M, Sayoc J, Park J-Y. Healthy versus unhealthy adipose tissue expansion: the role of exercise. J Obes Metab Syndrome. 2022;31(1):37. <https://doi.org/10.7570/jomes21096>
20. Pourvaghah MJ, Noori Mofrad SR, Khalafi M. The effect of high-intensity interval training on circulating leptin levels in individuals with and without chronic diseases: a systematic review and meta-analysis. J Sport Biosci. 2023;15(1):47-63. <http://dx.doi.org/10.22059/JSB.2023.354347.1570>
21. Makiel K, Suder A, Targosz A, Maciejczyk M, Kozioł-Kozakowska A, Haim A. Impact of two types of exercise interventions on leptin and omentin concentrations and indicators of lipid and carbohydrate metabolism in males with metabolic syndrome. J Clin Med. 2023;12(8):2822. <https://doi.org/10.3390/jcm12082822>
22. Ouerghi N, Fradj MKB, Duclos M, Bouassida A, Feki M, Weiss K, et al. Effects of high-intensity interval training on selected adipokines and cardiometabolic risk markers in normal-weight and overweight/obese young males—A pre-post test trial. Biology. 2022;11(6):853. <https://doi.org/10.3390%2Fbiology11060853>
23. Aktaş H, Uzun Y, Kutlu O, Pençe H, Özçelik F, Çil E, et al. The effects of high intensity-interval training on vaspin, adiponectin and leptin levels in women with polycystic ovary syndrome. Archives of physiology and biochemistry. 2022;128(1):37-42. <https://doi.org/10.1080/13813455.2019.1662450>
24. Ceylan H, Öztürk ME, Öztürk D, Silva AF, Albayrak M, Saygın Ö, et al. Acute effect of moderate and high-intensity interval exercises on asprosin and BDNF levels in inactive normal weight and obese individuals. Sci Report. 2023;13(1):7040. <https://www.nature.com/articles/s41598-023-34278-6>
25. Ryan BJ, Schleh MW, Ahn C, Ludzki AC, Gillen JB, Varshney P, et al. Moderate-intensity exercise and high-intensity interval training affect insulin sensitivity similarly in obese adults. J Clin Endocrinol Metab. 2020;105(8):e2941-e59. <https://doi.org/10.1210/clinem/dgaa345>

26. Ceylan Hİ, Saygın Ö, Özel Türkçü Ü. Assessment of acute aerobic exercise in the morning versus evening on asprosin, spexin, lipocalin-2, and insulin level in overweight/obese versus normal weight adult men. *Chronobiol Int.* 2020;37(8):1252-68. <https://doi.org/10.1080/07420528.2020.1792482>
27. Engin B, Willis SA, Malaikah S, Sargeant JA, Yates T, Gray LJ, et al. The effect of exercise training on adipose tissue insulin sensitivity: A systematic review and meta-analysis. *Obes Rev.* 2022;23(7):e13445. <https://doi.org/10.1111/obr.13445>
28. Liu L, Liu Y, Huang M, Zhang M, Zhu C, Chen X, et al. The effects of asprosin on exercise-intervention in metabolic diseases. *Front physiol.* 2022;13:907358. <https://doi.org/10.3389%2Ffphys.2022.907358>
29. Khalafi M, Symonds M. Impact of exercise training plus caloric restriction on cardiometabolic health in menopausal women who are overweight or obese: A meta-analysis. *Sci Sport.* 2023;38(2):116-26. <https://doi.org/10.1016/j.scispo.2022.01.007>
30. Kraemer RR, Chu H, Castracane VD. Leptin and exercise. *Exp Biol Med.* 2002;227(9):701-8. <https://doi.org/10.1177/153537020222700903>