

ORIGINAL ARTICLE**OPEN ACCESS****The Effect of Six Weeks of High-Intensity CrossFit Training on Serum Asprosin, Body Fat Percentage and Insulin Resistance in Men with Type 2 Diabetes****Abdolhasan Hemmati Moghadam**¹ PhD Candidate, **Marya Rahmani Ghobadi**^{2*} PhD, **Hassan SafiKhani**³ PhD¹ Department of Physical Education & Sport Sciences, Borujerd Branch, Islamic Azad University, Borujerd, Iran.² Department of Physical Education & Sport Sciences, Damavand Branch, Islamic Azad University, Damavand, Iran.³ Department of Physical Education & Sport Sciences, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.**ABSTRACT**

AIMS: Asprosin is an adipokine with gluconeogenic and metabotropic effects, which is related to type 2 diabetes. The present study aimed to determine the effect of six weeks of high-intensity CrossFit training (HICFT) on serum asprosin in men with type 2 diabetes.

MATERIALS AND METHODS: In the current semi-experimental research that was conducted in the summer of 2022 on patients who are members of the Dezful Diabetes Association, 30 obese men with type 2 diabetes living in Dezful city in Iran were selected and randomly divided into two groups of 15 HICFT and control. People in the training group did six weeks of HICFT training with an intensity of 80-85% of the reserve heart rate in three training sessions per week. Blood and anthropometric variables were examined 48 hours before and after the intervention in a fasting state. For statistical analysis, dependent t-tests and analysis of covariance were used in SPSS 26 software.

FINDINGS: In this study, 22 people (10 people in the HICFT group with an average age of 43.80 ± 3.08 years and 12 people with an average age of 44.58 ± 3.09 years in the control group) remained in the study. The average history of diabetes was 3.24 ± 0.45 years in the experimental group and 3.23 ± 0.42 years in the control group. The results showed that a significant decrease in serum asprosin (1.65 ng/ml), body fat (2.45%), and insulin resistance (0.94 units) was observed in the HICFT group compared to the control ($p < 0.001$).

CONCLUSION: According to the results, it can be said that HICFT has a positive role in reducing insulin resistance and blood sugar control in type 2 diabetes by improving body composition and reducing asprosin secretion. It seems that adjustment of fasting asprosin to body fat percentage is one of the effective mechanisms to reduce insulin resistance in type 2 diabetes in adaptation to high-intensity exercises.

KEYWORDS: Type 2 Diabetes Mellitus; Exercise Training; Asprosin; Body Composition; Insulin Resistance

How to cite this article:

Hemmati Moghadam A, Rahmani Ghobadi M, SafiKhani H. *The Effect of Six Weeks of High-Intensity CrossFit Training on Serum Asprosin, Body Fat Percentage and Insulin Resistance in Men with Type 2 Diabetes*. J Police Med. 2023;12(1):e16.

***Correspondence:**

Address: Department of Physical Education and Sport Sciences, Damavand Branch, Islamic Azad University, Damavand, Iran, Postal Code: 3971878911
Mail: maryarahmighobadi@gmail.com

Article History:

Received: 20/04/2023
Accepted: 05/08/2023
ePublished: 31/08/2023

The Effect of Six Weeks of High-Intensity CrossFit Training on Serum Asprosin, Body Fat Percentage and Insulin Resistance in Men with Type 2 Diabetes

INTRODUCTION

Continuous decreases in physical activity and the day-to-day increase in behaviors related to immobility, such as mechanical life, watching TV, and malnutrition, are among the causes of the prevalence of many chronic diseases that are related to today's lifestyle [1, 2]. The prevalence of overweight and obesity and subsequent diseases and metabolic disorders related to obesity have been increasing in the last two decades, and obesity has reached a pandemic level in the world [2]. Increasing sedentary behavior is one of the most important health-related problems that is spreading in different societies, which secretly increases the probability of chronic diseases such as metabolic syndrome and type 2 diabetes. In this regard, it has been reported that the high prevalence of type 2 diabetes is related to the obesity epidemic and sedentary lifestyle [3, 4]. On the other hand, it has been reported that reducing sedentary hours can improve body composition and reduce metabolic disorders, including insulin resistance [4].

Adipose tissue of an organ is a dynamic endocrine gland that is the source of production of some adipokines and plays a key role in metabolic settings and some physiological processes [5]. One of these adipokines is asprosin, which is related to hepatic glucose production. Asprosin signaling leads to the inhibition of proopiomelanocortin-positive descending neurons in a GABA-dependent manner, which results in appetite stimulation and a drive for fat accumulation and body weight gain [6]. In patients with type 2 diabetes, the circadian rhythm of circulating asprosin is disturbed [7]. Asprosin concentration is related to obesity and asprosin levels in these people are higher than people with normal body mass index [8, 9]. High levels of asprosin have been reported to be associated with different glucose tolerance, fasting glucose, glycosylated hemoglobin, triglycerides, and insulin resistance [10]. Also, a correlation between serum levels of asprosine and blood sugar fluctuations in patients with type 1 and type 2 diabetes has been reported [7, 11]. Therefore, serum asprosine can be evaluated as a biomarker in interventional research in the treatment of diabetes [5].

Changing lifestyle by increasing daily physical activity as well as regular exercise, in addition to increasing physical fitness [12], has been introduced as one of the main pillars in the type 2 diabetes treatment program [13, 14]. Many types of research have been conducted regarding the determination of the effect of different types and methods of exercise on clinical symptoms as well as the variables of the pathogenesis of type

2 diabetes [13]; The results of clinical research indicate that high-intensity exercise has a beneficial role in the management of type 2 diabetes, blood sugar control, and reducing its complications [15, 16]. Nevertheless, there is still no consensus regarding the real effects of high-intensity training and the resulting adaptations in patients with type 2 diabetes; For this reason, to obtain more information, it is necessary to examine the results of the effect of various high-intensity exercises on the adaptations obtained from exercise [15, 16]. In some research, new alternative exercise methods such as CrossFit, which have appeared in recent years, have been investigated in the management of diabetes. In a research, a group of 12 patients with type 2 diabetes did a six-week CrossFit program. According to the results, exercises have reduced body fat, diastolic blood pressure, lipids, and metabolic syndrome and increased insulin sensitivity to glucose, basal fat oxidation, and VO₂ max [17]. Functional training is a style of sports training, the training movements of which are designed to perform daily life tasks. Functional training usually improves people's physical fitness by using whole-body movements (simultaneous use of different muscles in the upper body and lower body) and increasing the intensity of the movements [18, 19]. Crossfit exercises are a group of high-intensity functional exercises, that can produce positive results on the health level of patients due to the variety of exercises and also activating more muscles in training sessions than running exercises [18, 19].

Limited research has been done on the effect of exercise on asprosin; For example, *Qalavand* et al. have reported a significant decrease in the serum levels of asprosin and glucose after 12 weeks of moderate-intensity interval training [5]. The results of another research conducted by *Akulut* et al. on healthy people show that after eight weeks of moderate and high-intensity exercises, a significant decrease in asprosin and fasting glucose levels can be seen [20]. Despite the role of body composition in asprosin in both studies, body composition changes were not reported. In another study conducted by *Huang* et al., although the research results show that the serum asprosin level in the obese subgroup is significantly higher than the serum level in the normal weight and overweight subgroups, however, except index interference. Body mass, there is no significant difference in serum asprosin between sedentary and exercise groups [21]. Considering the research gap and the difference in the results obtained regarding the effect of exercise training on asprosin, more research is needed to investigate the effect of exercise training on asprosin as a biomarker

related to glucose homeostasis, which justifies the necessity of the present research.

According to the said information and the role of High-Intensity Crossfit Training (HICFT) as a non-pharmacological method in the treatment of type 2 diabetes, as well as the key role of asprosin as a new adipokine that plays a key role in glucose metabolism. This article aimed to determine the effect of six weeks of HICFT on serum asprosin, insulin resistance, and body fat percentage in men with type 2 diabetes.

MATERIALS & METHODS

The current research is a semi-experimental research with a pre-test and post-test design, which was conducted on patients who are members of the *Dezful Diabetes Association* in the summer of 2022. After the necessary coordination and administrative correspondence from Borujerd University to Dezful University of Medical Sciences and announcing the invitation to type 2 diabetes patients who were members of the Dezful Diabetes Association, 30 men with type 2 diabetes living in Dezful city were randomly placed in the high-intensity interval training groups and the control group (without training). Each group was estimated to have 10 people, and according to the possibility of subjects dropping out, 15 people were considered in each group.

$$n = \frac{(Z_{1-\frac{\alpha}{2}} + Z_{1-\beta})^2 (S_1^2 + S_2^2)}{(\bar{X}_1 - \bar{X}_2)^2}$$

Conditions for entering the research, men with type 2 diabetes with an age range of 35-50 years, a sedentary lifestyle (no physical activity in the last six months), and first-degree obesity (body mass index between 30 and 35 kg/m²) and the history of diabetes diagnosis was less than 5 years, and the conditions for exiting the research included the use of drugs that affect heart rates such as beta-blockers, diabetic complications such as neuropathy and nephropathy, smoking, insulin injection, suffering from acute cardiovascular diseases, respiratory diseases, Muscular and skeletal diseases, history of frequent hypoglycemia or during exercise and any other intervention other than the intervention considered for the people of that group by the researcher.

After selecting the subjects and completing the consent form and demographic questionnaire, the necessary arrangements were made for the pre-test and the subjects came to the laboratory fasting at 8-9 in the morning to measure the blood variables, and their blood samples were taken. In the present research, body fat percentage was measured using a body composition device

and bioimpedance method. Serum asprosin level was measured using the WUHAN EIAAB SCIENCE kit made in China with a sensitivity of 0.8 ng/ml by ELISA method. Fasting blood sugar was measured with a glucose assay kit (Pars Azmoon) and serum insulin with an ELISA kit (Monobind Co. US). Insulin resistance was calculated by computational method and using the homeostasis model of insulin resistance assessment which is given below.

$$\text{HOMA-IR} = \text{Fasting Insulin}^{\text{(microU/L)}} \times \text{Fasting glucose}^{\text{(nmol/L)}} / 22.5$$

To perform sports exercises, the exercise groups performed 18 sessions over six weeks, and in each session every other day (3 days a week), they performed sports exercises under the supervision of the trainer and researcher, as well as the presence of a nurse. The training time was considered at 17-18 in the evening. In the present study, the subjects warmed up under the coach's supervision for 10-15 minutes before starting the exercise. Warm-up exercises included aerobic exercises, static and dynamic stretching exercises, kinetic movements, and warming up the joints involved in the exercises [22]. In the HICFT group, the exercise protocol including the Crossfit exercises used in Fealy et al.'s research was used to select movements [23], which included battle rope exercises, kettlebells, squat jump movements, box jumps, wall ball exercises, and medicine balls as well. The exercises were climbing, burpees, and exercises with barbells and dumbbells. In Fealy et al.'s research, the basis of intensity was the number of repetitions at a certain time; In our research, the number of repetitions and weights were used to increase the training intensity, and the basis of the training intensity was controlled according to the target heart rate (Table 1). Exercise intensity was calculated according to each person's heart rate reserve and using the Karvonen formula below. In this research, subjects were taught how to measure and count pulse rate. The maximum heart rate was calculated according to the age of the people and the following formula [24].

$$\text{HR}_{\text{max}} = 220 - \text{age}$$

$$\text{Target Heart Rate} = [(\text{max HR} - \text{resting HR}) \times \% \text{Intensity}] + \text{resting HR}$$

Ethical Permissions: In this research, all ethical considerations were observed and informed consent was obtained from all subjects. The present article is a part of a doctoral dissertation entitled "Comparison of the effect of six weeks of high-intensity interval training and high-intensity functional training on serum asprosin levels in obese men with type 2 diabetes" and all research stages were approved by the ethics committee of

The Effect of Six Weeks of High-Intensity CrossFit Training on Serum Asprosin, Body Fat Percentage and Insulin Resistance in Men with Type 2 Diabetes

the Institute of Physical Education with the code of ethics IR .SSRC.REC.1402.086.

Statistical Analysis: The changes of the investigated indicators were analyzed using t-test and covariance analysis. SPSS 26 software was used with a significance level of $p<0.05$.

FINDINGS

In this study, 22 people (10 people in the HICFT group with an average age of 43.80 ± 3.08 years and 12 people with an average age of 44.58 ± 3.09 years in the control group) remained in the study (Table 2). The average history of diabetes was 3.24 ± 0.45 years in the experimental group and 3.23 ± 0.42 years in the control group (Table 2). According to the independent t-test results, there was no difference between the demographic

variables of the subjects in the two training and control groups, and both groups were homogeneous in terms of demographic variables (Table 2). According to the results of the dependent t-test, there was a significant decrease in insulin resistance levels (3.16 ± 0.51 in the pre-test, 2.23 ± 0.48 in the post-test), body fat percentage (30.95 ± 1.85 in the pre-test, 28.73 ± 1.84 in the post-test) and serum asprosin (41.80 ± 7.64 in the pre-test, 36.50 ± 6.59 in the post-test) were observed in the training group (Table 3; $p<0.001$). However, no significant difference was observed in the control group ($p<0.05$). Also, the results of covariance analysis showed that the changes in insulin resistance, body fat percentage, and serum asprosin in the training group were significant compared to the control group ($p<0.001$).

Table 1) Six-week HIIT exercise training protocol

Week	Circle	Station	Practice time (Second)	Training Hardship (HRR)	Rest ratio to Practice	Rest between courses	Rest between circles	
							type	time (minutes)
1	3	6				Inactive	Inactive	3-5
2	4	6	10	80-85	1:1	Inactive	Inactive	3-5
3	4	7	10	80-85	1:1	active	Inactive	3-5
4	5	7	10	80-85	1:1	active	Inactive	3-5
5	5	8	10	80-85	1:1	active	Inactive	3-5
6	6	8	10	80-85	1:1	active	Inactive	3-5

Table 2) Demographic indicators of subjects

Indicator	exercise (n=10) M \pm SD	control (n=12) M \pm SD	p
age (years)	43.80 ± 3.08	44.58 ± 3.09	0.906
height (cm)	171.23 ± 7.54	172.40 ± 5.19	0.927
weight (kg)	95.20 ± 5.74	93.84 ± 4.30	0.781
Body mass index (kilograms per square meter)	32.53 ± 2.01	31.60 ± 1.36	0.839
history of diabetes (years)	3.24 ± 0.45	3.23 ± 0.42	0.931

Table 3) Examining the effect of exercise on the investigated indicators

Indicator	Group	Dependent t-test			ANCOVA test	
		pre-test	Post-test	t	p	
Insulin resistance	Practice	3.16 ± 0.51	2.23 ± 0.48	11.888	0.001>	76.647
	Control	2.99 ± 0.27	3.28 ± 0.29	-3.062	0.011	
body fat	Practice	30.95 ± 1.85	28.73 ± 1.84	6.367	0.001>	27.627
	Control	30.99 ± 1.71	31.01 ± 1.63	-0.74	0.942	
Asprosin	Practice	41.80 ± 7.64	36.50 ± 6.59	8.610	0.001>	26.953
	Control	39.25 ± 5.61	39.42 ± 5.47	-0.212	0.836	

DISCUSSION

This study aimed to determine the effect of six weeks of HICFT on fasting serum asprosin, insulin resistance, and body fat percentage in men with type 2 diabetes. The research results showed that after the training period, there was a significant decrease in serum asprosin (1.65 ng/ml), body fat (2.45%), and insulin resistance (0.94 units) in the training group compared to the control

group. Qalavand et al. also reported in their research that twelve weeks of intermittent aerobic exercise with moderate intensity reduced serum asprosin in men with type 2 diabetes [5]. The HICFT exercises in the present study were able to produce similar results in a shorter period (six weeks) to the research of Qalavand et al. (twelve weeks) in reducing serum asprosin in men with type 2 diabetes. It has been reported that adipocytes are the main

source of asprosin synthesis and secretion in the blood [5]. Also, the results of our research were in line with the research results of *Akbulut* et al., who reported that moderate and high-intensity aerobic exercises can cause a significant decrease in asprosin and fasting glucose levels [20]. In our research, unlike these two studies, which only investigated blood variables; Changes in fat percentage were also investigated and the results showed a decrease in fat percentage as a variable related to body composition. The reduction of serum asprosin in the present study can be attributed to the reduction of body fat percentage and improvement of body composition following HICFT exercises. Asprosin has been reported to be associated with obesity [25], which can be affected by exercise training. However, in a study conducted by *Huang* et al., they did not report a significant difference in serum asprosin between sedentary and exercise groups [21], which is not consistent with our research results. The reason for this inconsistency may be due to the difference in the subjects' characteristics in terms of baseline levels of asprosin. Asprosin stimulates the production of hepatic glucose, crosses the blood-brain barrier and stimulates the appetite center, and also causes the release of hepatic glucose through the G protein-adenosine monophosphate-cyclic protein kinase A pathway [26]; Asprosin induces inflammation, cell dysfunction, apoptosis, and reduced glucose-induced insulin production in β -cells through upregulation of the TLR4/JNK-mediated pathway [27]. It can be said that the significant decrease in the level of fasting serum asprosin in the present study was related to the increase in insulin sensitivity and, as a result, better blood sugar control in adaptation to HICFT exercises. In their research, *Fealy* et al reported a significant increase in insulin sensitivity in patients with type 2 diabetes after six weeks of high-intensity functional training [23]. Considering that asprosin is secreted from adipose tissue, it can be said that by improving body composition and as a result reducing body fat percentage, the amount of asprosin secretion decreases [21] and this mechanism leads to better blood sugar control in diabetic patients after exercise program. Reducing insulin resistance in adapting to regular exercise is influenced by various factors, including metabolic flexibility due to the modulation of hormones related to hepatic glucose secretion such as glucagon, as well as the improvement of insulin signaling in insulin-sensitive tissues [28, 29] due to the reduction of free radicals and Inflammatory factors [30], improved body composition [29] as well as changes in the secretion of cytokines related to energy metabolism [31, 32]. As a result, exercise

improves metabolic flexibility in patients with type 2 diabetes and can prevent the complications of type 2 diabetes, including cardiometabolic complications [33]. On the other hand, it has been reported that asprosin is an orexigenic hormone with a central effect that increases appetite and eventually leads to obesity and weight gain [6]. It is possible that HICFT exercises, with their positive effects on serum asprosin, can moderate the effects associated with metabolically unhealthy obesity in diabetic patients by affecting patients' appetite and resulting in better weight control, which indicates the need for further research. It has been reported that poor control of type 2 diabetes due to increased oxidative stress and inflammatory mediators causes a decrease in cells [30]. Various models have been proposed to explain the decline in β -cell function, including β -cell depletion, β -cell exhaustion, and dedifferentiation into other cell types [34]. It has recently been reported that the release of palmitic-derived asprosin from β -cells leads to their inflammation and dysfunction through a TLR4/JNK-mediated pathway and inflammation [27]. Based on this, HICFT exercise intervention may have positive effects on the protection of β -cells. However, in our research, oxidative stress and inflammatory factors were not measured, which are limitations of the present research. Based on this, it is suggested that in future research, the variables related to oxidative stress, as well as enzymatic and non-enzymatic antioxidant agents, and inflammatory and anti-inflammatory cytokines, will be investigated in addition to the variables of the current research. It is also suggested to use subjects with different levels of glycemic status, including healthy people, pre-diabetes, and type 2 diabetes patients in future research.

CONCLUSION

Six weeks of HICFT decreases body fat percentage, decreases fasting asprosin, and also decreases insulin resistance in men with type 2 diabetes. Considering that the source of asprosin secretion is adipose tissue, the reduction of serum asprosin can be justified in the improvement of body composition in adaptation to HICFT. On the other hand, asprosin is a glucogenic adipokine that causes glucose homeostasis, which increases in patients with type 2 diabetes due to pathological reasons. According to the feedback axis of asprosin secretion, which is related to fat tissue, the hypothalamus, and the liver as asprosin receptors; It can be said that a short period of HICFT improves the axis of asprosin secretion and, as a result, better glucose homeostasis in type 2 diabetes. Accordingly, HICFT exercises can be

Clinical & Practical Tips in POLICE

MEDICINE: Considering that military and law enforcement personnel are also prone to metabolic disorders, including obesity and type 2 diabetes, due to modern lifestyles, including changes in nutrition and physical activity levels, as well as the stress of the work environment; accordingly, it is suggested that they do regular exercise to improve their metabolic health. Also, police command personnel can use the current training protocol as one of the new training methods in the prevention and treatment of metabolic disorders such as obesity and insulin resistance.

Acknowledgments: This article is a part of the first author's doctoral thesis; The authors are grateful to all those who have cooperated in this research.

Conflict of interest: The authors of the article stated that there is no conflict of interest regarding the present study.

Authors' Contribution: First author: presented the idea and design of the study, data collection, and data analysis; the second author: idea presentation, and data analysis, the third author: idea presentation; All the authors participated in the initial writing of the article and its revision, and all accept the responsibility for the accuracy and correctness of the contents of this article with the final approval of this article.

Financial Sources: This article had no financial support.

نشریه طب انتظامی

۶ دسترسی آزاد

مقاله اصیل

اثر شش هفته تمرینات کراس فیت شدت بالا بر آسپروسین سرمی، درصد چربی بدن و مقاومت به انسولین در مردان مبتلا به دیابت نوع دو

عبدالحسن همتی مقدم^۱, PhD Candidate^۱, ماریا رحمانی قبادی^{۲*}, PhD^۲, حسن صفائی خانی^۳

^۱ گروه تربیت بدنی و علوم ورزشی، واحد بروجرد، دانشگاه آزاد اسلامی، بروجرد، ایران.

^۲ گروه تربیت بدنی و علوم ورزشی، واحد دماوند، دانشگاه آزاد اسلامی، دماوند، ایران.

^۳ گروه تربیت بدنی و علوم ورزشی، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران.

چکیده

اهداف: آسپروسین یک آدیبیوکین با اثرات گلوكونئوتیزیکی و متابوتروپیبیکی است که در ارتباط با دیابت نوع دو است. هدف تحقیق حاضر، تعیین اثر شش هفته تمرینات کراس فیت شدت بالا (HICFT) بر آسپروسین سرمی در مردان مبتلا به دیابت نوع دو بود.

مواد و روش‌ها: در تحقیق نیمه‌تجربی حاضر که در تابستان ۱۴۰۱ روی بیماران عضو انجمن دیابت دزفول انجام شد، ۳۰ مرد چاق و مبتلا به دیابت نوع دو ساکن شهرستان دزفول به صورت تصادفی انتخاب و به صورت تصادفی در دو گروه ۱۵ انفره HICFT و کنترل تقسیم شدند. افراد گروه تمرین، شش هفته تمرین HICFT با شدت ۸۰-۸۵ درصد ضربان قلب ذخیره در سه جلسه تمرین در هفته انجام دادند. متغیرهای خونی و آنتروپومتریک، ۴۸ ساعت قبل و پس از مداخله به صورت ناشتا بررسی شدند. برای تجزیه و تحلیل آماری از آزمون‌های تی وابسته و تحلیل کواریانس در قالب نرم‌افزار SPSS 26 استفاده شد.

یافته‌ها: در این پژوهش در نهایت ۲۲ نفر گروه HICFT با میانگین سنی $۴۳/۸۰ \pm ۳/۰۸$ سال و ۱۲ نفر با میانگین سنی $۴۴/۵۸ \pm ۳/۰۹$ سال در گروه کنترل در پژوهش باقی ماندند. میانگین سالگیر دیابت در گروه آزمایش $۳/۲۴ \pm ۰/۴۵$ سال و در گروه کنترل $۴/۴2 \pm ۰/۳۳$ سال بود. نتایج نشان داد که کاهش معناداری در آسپروسین سرمی ($1/۶۵$ نانوگرم بر میلی لیتر)، چربی بدن ($2/۴۵$ درصد) و مقاومت به انسولین ($2/۹۴$ واحد) در گروه HICFT نسبت به کنترل مشاهده شد ($p < 0.001$).

نتیجه‌گیری: با توجه به نتایج می‌توان گفت که HICFT با بهبود ترکیب بدن و کاهش ترکیب آسپروسین نقش مثبتی در کاهش مقاومت به انسولین و کنترل قند خون در دیابت نوع دو دارد. به نظر می‌رسد که تغییر آسپروسین ناشتا به درصد چربی بدن از مکانیسم‌های مؤثر بر کاهش مقاومت به انسولین در سازگاری به تمرینات شدت بالا باشد.

کلیدواژه‌ها: دیابت نوع ۲، تمرین ورزشی، آسپروسین، ترکیب بدن، مقاومت به انسولین

تاریخچه مقاله:

دریافت: ۱۴۰۲/۰۱/۳۱

پذیرش: ۱۴۰۲/۰۵/۱۴

انشای: ۱۴۰۲/۰۶/۰۹

نویسنده مسئول*:

آدرس پستی: گروه تربیت بدنی و علوم ورزشی، واحد دماوند، دانشگاه آزاد اسلامی، دماوند، ایران.

کد پستی: ۳۹۷۱۸۷۸۹۱

پست الکترونیکی:

maryarahmighobadi@gmail.com

نحوه استناد به مقاله:

Hemmati Moghadam A, Rahmani Ghobadi M, SafiKhani H. *The Effect of Six Weeks of High-Intensity CrossFit Training on Serum Asprosin, Body Fat Percentage and Insulin Resistance in Men with Type 2 Diabetes*. J Police Med. 2023;12(1):e16.

مقدمه

شدت بالا، نقش مفیدی در مدیریت دیابت نوع دو، کنترل قند خون و همچنین کاهش عوارض آن دارد [۱۵، ۱۶]. با این وجود، هنوز در خصوص اثرات واقعی تمرینات شدت بالا و همچنین سازگاری‌های ناشی از آن در بیماران مبتلا به دیابت نوع دو، اجماع نظر کافی وجود ندارد؛ به همین دلیل برای کسب اطلاعات بیشتر نیاز به بررسی نتایج اثر انواع تمرینات شدت بالا بر سازگاری‌های کسب شده از تمرین است [۱۵، ۱۶]. در برخی تحقیقات، روش‌های نوین تمرینی جایگزین مانند کراس فیت که در سال‌های اخیر ظاهر شده است، بر مدیریت دیابت مورد بررسی قرار گرفته‌اند. در پژوهشی، یک گروه شامل ۱۲ بیمار مبتلا به دیابت نوع دو، یک برنامه شش‌هفته‌ای کراس فیت را انجام داده‌اند. مطابق نتایج، تمرینات باعث کاهش چربی بدن، فشار خون دیاستولیک، لیپیدها و سندروم متابولیک و افزایش حساسیت به انسولین نسبت به گلوكز، اکسیداسیون چربی پایه، $VO_{2\text{max}}$ شده است [۱۷]. تمرینات عملکردی، سبکی از تمرینات ورزشی هستند که حرکات تمرینی آن به منظور انجام کارهای روزمره زندگی طراحی می‌شود. تمرینات عملکردی معمولاً با استفاده از حرکات تمام بدن (استفاده هم‌زمان از عضلات مختلف در بالا تنہ و پایین تنہ) و افزایش شدت حرکات، باعث ارتقای آمادگی جسمانی افراد می‌شود [۱۸، ۱۹]. تمرینات کراس فیت در واقع از گروه تمرینات فانکشنال شدت بالا است که با توجه به تنوع تمرین و همچنین فعل کردن عضلات بیشتر در جلسات تمرینی نسبت به تمرینات دویین، می‌تواند نتایج مثبتی بر سطح سلامت بیماران ایجاد کند [۱۹، ۱۸].

در خصوص اثر تمرینات ورزشی بر آسپروسین تحقیقات محدودی انجام شده است؛ برای مثال قلاؤند و همکاران پس از یک دوره ۱۲ هفته‌ای تمرینات تناوبی با شدت متوسط کاهش معناداری در سطح سرمی آسپروسین و گلوكز ناشا گزارش کرده‌اند [۵]. نتایج تحقیق دیگری که توسط *Akbulut* و همکاران روی افراد سالم انجام شده، نشان می‌دهد که پس از هشت هفته تمرینات با شدت متوسط و شدت بالا کاهش معناداری در سطح آسپروسین و گلوكز ناشتا دیده می‌شود [۲۰]. با وجود نقش ترکیب بدنی در آسپروسین در هر دو تحقیق، تغییرات ترکیب بدن گزارش نشده است. در تحقیق دیگری که توسط *Huang* و همکاران انجام شده، با وجود اینکه نتایج تحقیق نشان می‌دهد، سطح آسپروزین سرم در زیر گروه چاق به طور معناداری بیشتر از سطح سرمی در زیر گروه‌های با وزن طبیعی و دارای اضافه وزن است، با این وجود به استثنای تداخل شاخص توده بدن، تفاوت معناداری در آسپروسین سرم بین گروه‌های بی‌تحرک و ورزش وجود ندارد [۲۱]. با توجه به شکاف تحقیقاتی و تفاوت در نتایج به دست آمده در خصوص اثر تمرینات ورزشی بر آسپروسین، نیاز به تحقیقات بیشتری به منظور بررسی اثر تمرینات ورزشی بر آسپروسین به عنوان یک بیومارکر مرتبط با هوموتوستاز

کاهش روزافزون فعالیت بدنی و افزایش رفتارهای مرتبط با بی‌تحرکی از جمله زندگی ماشینی، تماشای تلویزیون و همچنین سوء تغذیه، از عوامل شیوع بسیاری از بیماری‌های مزمن هستند که در ارتباط با شیوه زندگی امروزی هستند [۱، ۲]. شیوع اضافه وزن و چاقی و متعاقب آن بیماری‌ها و اختلالات متابولیک مرتبط با چاقی در دو دهه گذشته افزایش فزاینده‌ای داشته و ابتلا به چاقی در جهان به حد پاندمیک رسیده است [۲]. افزایش رفتارهای بی‌تحرکی از مهم‌ترین مشکلات مرتبط با سلامت هستند که در جوامع مختلف در حال گسترش است که به طور پنهان، احتمال بروز بیماری‌های مزمن مانند سندروم متابولیک و دیابت نوع دو را افزایش می‌دهد. در همین خصوص گزارش شده است که شیوع بالای دیابت نوع دو با اپیدمی چاقی و سبک زندگی بی‌تحرک در ارتباط است [۳، ۴]. از طرفی گزارش شده است که کاهش ساعت‌بی‌تحرکی می‌تواند موجب بهبود ترکیب بدن و همچنین کاهش اختلالات متابولیک از جمله مقاومت به انسولین باشد [۴].

بافت چربی یک اندام، غدد درون‌ریز پویایی است که منبع تولید برخی آدیپوکین‌ها است و نقش کلیدی در تنظیمات متابولیکی و برخی فرایندهای فیزیولوژیکی دارد [۵]. یکی از این آدیپوکین‌ها، آسپروسین است که در ارتباط با تولید گلوكز کبدی است. سیگنالینگ آسپروسین منجر به مهار نورون‌های مثبت پایین‌آورنده پرووپیوملانوکورتین به شیوه وابسته به GABA می‌شود که نتیجه آن تحریک اشتها و انگیزه‌ای برای تجمع چربی و افزایش وزن بدن است [۶]. در بیماران مبتلا به دیابت نوع دو، ریتم شبانه‌روزی آسپروسین در گردش دچار اختلال می‌گردد [۷]. غلظت آسپروسین در ارتباط با چاقی است و سطوح آسپروسین در این افراد نسبت به افراد با شاخص توده بدن طبیعی، بالاتر است [۸، ۹]. گزارش شده است که سطوح بالای آسپروسین با تحمل گلوكز مختلف، گلوكز ناشتا، هموگلوبین گلیکوزیله، تری گلیسیرید و مقاومت به انسولین در ارتباط است [۱۰]. همچنین، یک ارتباط بین سطح سرمی آسپروزین با نوسانات قند خون در بیماران مبتلا به دیابت نوع یک و دو گزارش شده است [۱۱، ۱۲]. بنابراین، آسپروزین سرمی، می‌تواند به عنوان یک نشانگر زیستی در تحقیقات مداخله‌ای در درمان دیابت مورد ارزیابی قرار گیرد [۵].

تغییر سبک زندگی با افزایش فعالیت بدنی روزانه و همچنین تمرینات ورزشی منظم علاوه بر افزایش آمادگی جسمانی [۱۲]، به عنوان یکی از ارکان اصلی در برنامه درمانی دیابت نوع دو معروفی شده است [۱۳، ۱۴]. پژوهش‌های زیادی در خصوص تعیین اثر انواع و شیوه‌های مختلف تمرینات ورزشی روی عالیم بالینی و همچنین متغیرهای عوامل پاتوزنر دیابت نوع دو انجام شده است [۱۳]؛ نتایج پژوهش‌های بالینی حاکی از این است که تمرینات ورزشی

اثر شش هفته تمرینات کراسفیت شدت بالا بر آسپروسین سرمی، درصد چربی بدن و مقاومت به انسولین در مردان مبتلا به دیابت نوع دو

کشور چین با حساسیت ۸/۸ نانوگرم بر میلی لیتر به روش الایزا اندازه‌گیری شد. قند خون ناشتا با کیت سنجش گلوكز (پارس آزمون) و انسولین سرم با کیت الایزا گلوكز (Monobind Co. US) اندازه‌گیری شد. مقاومت به انسولین به روش محاسباتی و با استفاده از مدل هموستاز ارزیابی مقاومت به انسولین که در زیر آمده است، محاسبه شد.

$$\text{HOMA-IR} = \text{fasting insulin}^{\text{(microU/L)}} \times \text{fasting glucose}^{\text{(nmol/L)}} / 22.5$$

جهت انجام تمرینات ورزشی، گروه‌های تمرین به مدت ۱۸ جلسه طی شش هفته و در هر جلسه به صورت یک روز در میان (۳ روز در هفته)، تمرینات ورزشی را تحت نظارت مربی و پژوهشگر و همچنین حضور پرستار انجام دادند. زمان تمرینات در ساعت ۱۷-۱۸ عصر در نظر گرفته شد. در پژوهش حاضر آزمودنی‌های مورد مطالعه قبل از شروع تمرین به مدت ۱۰-۱۵ دقیقه به گرم کردن زیر نظر پرداختند. تمرینات گرم کردن شامل تمرینات هوایی، سپس حرکات کششی ایستا و پویا و حرکات جنبشی و گرم کردن مفاصل درگیر در تمرینات اجرا شد [۲۲]. در گروه HICFT پروتکل تمرینی شامل تمرینات کراس فیت مورد استفاده در تحقیق *Fealy* و همکاران برای انتخاب حرکات استفاده شد [۲۳]، که شامل تمرینات بتل روپ، کتل بل، حرکات اسکووات جامپ، باکس جامپ، تمرینات با وال بال، مدیسن بال و همچنین حرکات کوهنوردی، بورپی، تمرینات با هالتر و دمبل بود. در تحقیق *Fealy* و همکاران، اساس شدت، تعداد تکرار در زمان خاص بود؛ در تحقیق ما نیز از تعداد تکرار و وزن برای افزودن شدت تمرین استفاده شد و اساس شدت تمرین نیز با توجه به ضربان قلب ذخیره هدف کنترل شد (جدول ۱).

شدت تمرین با توجه به ضربان قلب ذخیره هر فرد و با استفاده از فرمول *Karvonen* که در زیر آمده، محاسبه شد. در این تحقیق نحوه اندازه‌گیری و شمارش ضربان نبض به آزمودنی‌ها آموزش داده شد. حداقل ضربان قلب با توجه به سن افراد و فرمول ذیل محاسبه شد [۲۴].

$$\text{age} - 220 = \text{HRmax}$$

$$\text{Target Heart Rate} = [(\text{max HR} - \text{resting HR}) \times \% \text{Intensity}] + \text{resting HR}$$

ملاحظات اخلاقی: در این پژوهش تمامی ملاحظات اخلاقی رعایت شد و از تمام آزمودنی‌ها رضایت آگاهانه دریافت شد. مقاله حاضر بخشی از رساله دکتری با عنوان «مقایسه اثر شش هفته تمرینات تناوبی شدت بالا و تمرینات فانکشنال شدت بالا بر سطوح آسپروسین سرمی در مردان چاق مبتلا به دیابت نوع دو» است و تمامی مراحل تحقیق حاضر توسط کمینه اخلاق پژوهشگاه تربیت بدنی با کد اخلاق IRSSRC.REC.1402.086 تأیید شد. تجزیه و تحلیل آماری: تغییرات شاخص‌های مورد تحقیق با استفاده از آزمون‌های *t-test* و تحلیل کوواریانس بررسی شدند. از نرم افزار SPSS 26 با سطح

گلوكز است که ضرورت تحقیق حاضر را توجیه می‌کند. با توجه به مطالب گفته شده و نقش تمرینات (High-Intensity Crossfit) Training H:ICFT به عنوان یک روش غیردارویی در درمان دیابت نوع دو و همچنین نقش کلیدی آسپروسین به عنوان یک آدیوکین جدید که نقش کلیدی در متابولیسم HICFT گلوكز دارد، هدف این مقاله تعیین اثر شش هفته آسپروسین سرمی، مقاومت به انسولین و درصد چربی بدن در مردان مبتلا به دیابت نوع دو بود.

مواد و روش‌ها

تحقیق حاضر از دسته تحقیقات نیمه‌تجربی با طرح پیش‌آزمون و پس‌آزمون است که روی بیماران عضو انجمن دیابت دزفول در تابستان ۱۴۰۱ انجام شد. پس از هماهنگی‌های لازم و مکاتبات اداری از دانشگاه بروجرد به دانشگاه علوم پزشکی دزفول و اعلام فراخوان به بیماران مبتلا به دیابت نوع دو که عضو انجمن دیابت دزفول بودند، ۳۰ مرد مبتلا به دیابت نوع دو ساکن شهرستان دزفول، به روش تصادفی انتخاب و به روش تصادفی در گروه‌های تمرین تناوبی شدت بالا و گروه کنترل (بدون تمرین) قرار داده شدند. حجم نمونه در تحقیق حاضر بر اساس مطالعات پیشین [۵] و همچنین فرمول برآورد حجم نمونه در هر گروه، ۱۰ نفر برآورد شد و با توجه به احتمال ریزش آزمودنی‌ها در هر گروه ۱۵ نفر در نظر گرفته شد.

$$n = \frac{(Z_{1-\frac{\alpha}{2}} + Z_{1-\beta})^2 (S_1^2 + S_2^2)}{(\bar{X}_1 - \bar{X}_2)^2}$$

شرایط ورود به تحقیق، مردان مبتلا به دیابت نوع دو با دامنه سنی ۳۵-۵۰ سال، سبک زندگی بی تحرک (نداشتن فعالیت جسمانی در شش ماه گذشته) و چاقی درجه یک (شاخص توده بدنی بین ۳۰ تا ۳۵ کیلوگرم بر متر مربع) و سابقه تشخیص دیابت کمتر از ۵ سال بود و شرایط خروج از تحقیق نیز شامل مصرف داروهای مؤثر بر ضربان قلب مثل بتاپلکرها، عوارض دیابتی مانند نروپاتی و نفروپاتی، مصرف سیگار، تزریق انسولین، ابتلا به بیماری‌های قلبی-عروقی حاد، بیماری‌های تنفسی، بیماری‌های عضلانی و اسکلتی، سایه‌قۀ هیپوگلیسمی مکرر یا هنگام ورزش و انجام هرگونه مداخله دیگر به غیر از مداخله در نظر گرفته شده برای افراد آن گروه توسط پژوهشگر بود.

پس از انتخاب آزمودنی‌ها و تکمیل رضایت‌نامه و پرسشنامه دموگرافیک، هماهنگی‌های لازم برای پیش‌آزمون انجام شد و آزمودنی‌ها برای سنجش متغیرهای خونی در ساعت ۸-۹ صبح به صورت ناشتا در آزمایشگاه حاضر شدند و نمونه‌های خونی آنها گرفته شد. در تحقیق حاضر درصد چربی بدن با استفاده از دستگاه بادی کامپوزیشن و به روش بیوایمپدانس اندازه‌گیری شد. سطح آسپروسین سرمی با استفاده از کیت WUHAN EIAAB SCIENCE ساخت

معناداری $p < 0.05$ استفاده شد.

یافته‌ها

در این پژوهش در نهایت ۲۲ نفر (۱۰ نفر گروه HICFT با میانگین سنی $۴۳/۸۰ \pm ۳/۰۸$ سال و ۱۲ نفر با میانگین سنی $۴۴/۵۸ \pm ۳/۰۹$ سال در گروه کنترل) در پژوهش باقی ماندند (جدول ۲). میانگین سابقه دیابت در گروه آزمایش ماندند (جدول ۲). میانگین سابقه دیابت در گروه کنترل ۳/۲۳ \pm ۰/۴۲ سال بود (جدول ۲). با توجه به نتایج آزمون تی مستقل تفاوتی بین متغیرهای دموگرافیک آزمودنی‌ها در دو گروه تمرین و کنترل وجود نداشت و هر دو گروه از نظر متغیرهای

دموگرافیک همگن بودند (جدول ۲). با توجه به نتایج آزمون تی وابسته، کاهش معناداری در سطوح مقاومت به انسولین (۳/۱۶ \pm ۰/۵۱ در پیش آزمون، ۲/۲۳ \pm ۰/۴۸ در پس آزمون)، درصد چربی بدن (۳۰/۹۵ \pm ۱/۸۵ در پیش آزمون، ۲۸/۷۳ \pm ۱/۸۴ در پس آزمون) و آسپروسین سرمی (۴۱/۸۰ \pm ۷/۶۴ در پیش آزمون، ۳۶/۵۰ \pm ۶/۵۹ در پس آزمون) در گروه تمرین مشاهده شد (جدول ۳) $p < 0.001$. همچنین معناداری در گروه کنترل مشاهده نشد ($p > 0.05$). نتایج تحلیل کواریانس نشان داد که تغییرات مقاومت به انسولین، درصد چربی بدن و آسپروسین سرمی در گروه تمرین نسبت به گروه کنترل معنادار بود ($p < 0.001$).

جدول (۱) پروتکل شش‌هفته‌ای تمرینات ورزشی HICFT

استراحت بین دایره‌ها	استراحت بین دوره‌ها	نسبت استراحت به تمرین	شدت تمرین (HRR)	زمان تمرین (ثانیه)	ایستگاه	دایره	هفت
زمان (دقیقه)	نوع						
۳-۵	غیرفعال	غیرفعال	۱:۱	۸۰-۸۵	۱۰	۶	۳ ۱
۳-۵	غیرفعال	غیرفعال	۱:۱	۸۰-۸۵	۱۰	۶	۴ ۲
۳-۵	غیرفعال	فعال	۱:۱	۸۰-۸۵	۱۰	۷	۴ ۳
۳-۵	غیرفعال	فعال	۱:۱	۸۰-۸۵	۱۰	۷	۵ ۴
۳-۵	غیرفعال	فعال	۱:۱	۸۰-۸۵	۱۰	۸	۵ ۵
۳-۵	غیرفعال	فعال	۱:۱	۸۰-۸۵	۱۰	۸	۶ ۶

جدول (۲) شاخص‌های دموگرافیک آزمودنی‌ها

p	کنترل (n=۱۲) M \pm SD	تمرین (n=۱۰) M \pm SD	شاخص
۰/۹۰۶	۴۴/۵۸ \pm ۳/۰۹	۴۳/۸۰ \pm ۳/۰۸	سن (سال)
۰/۹۲۷	۱۷۲/۴۰ \pm ۵/۱۹	۱۷۱/۲۳ \pm ۷/۵۴	قد (سانسیتمتر)
۰/۷۸۱	۹۳/۸۴ \pm ۴/۳۰	۹۵/۲۰ \pm ۵/۷۴	وزن (کیلوگرم)
۰/۸۳۹	۳۱/۶۰ \pm ۱/۳۶	۳۲/۵۳ \pm ۲/۰۱	شاخص توده بدن (کیلوگرم بر متر مربع)
۰/۹۳۱	۳/۲۳ \pm ۰/۴۲	۲/۲۴ \pm ۰/۴۵	سابقه دیابت (سال)

جدول (۳) بررسی اثر تمرین بر شاخص‌های مورد بررسی

آزمون آنکوا	آزمون تی وابسته						شاخص
p	F	p	t	پس آزمون M \pm SD	پیش آزمون M \pm SD	گروه	
۰/۰۰۱	۷۶/۶۴۷	<۰/۰۰۱	۱۱/۸۸۸	۲/۲۳ \pm ۰/۴۸	۳/۱۶ \pm ۰/۵۱	تمرین	مقاومت به انسولین
			-۳/۰۶۲	۳/۲۸ \pm ۰/۲۹	۲/۹۹ \pm ۰/۲۷	کنترل	
۰/۰۰۱	۲۷/۶۲۷	<۰/۰۰۱	۶/۳۶۷	۲۸/۷۳ \pm ۱/۸۴	۳/۰/۹۵ \pm ۱/۸۵	تمرین	چربی بدن
			-۰/۰۷۴	۳۱/۰۱ \pm ۰/۶۳	۳۰/۹۹ \pm ۱/۷۱	کنترل	
۰/۰۰۱	۲۶/۹۵۳	<۰/۰۰۱	۸/۶۱۰	۳۶/۵۰ \pm ۶/۵۹	۴۱/۸۰ \pm ۷/۶۴	تمرین	آسپروسین
			-۰/۰۸۳۶	۳۹/۴۲ \pm ۵/۴۷	۳۹/۲۵ \pm ۵/۶۱	کنترل	

گروه تمرین نسبت به گروه کنترل مشاهده شد. قلاؤند و همکاران نیز در تحقیق‌شان گزارش کرده‌اند که دوازده هفته تمرینات هوایی تناوبی با شدت متوسط موجب کاهش آسپروسین سرمی در مردان مبتلا به دیابت نوع دو شده است [۵]. در واقع تمرینات HICFT در تحقیق حاضر توانست در مدت زمانی کوتاه‌تر (شش هفته) نتایج مشابهی با تحقیق قلاؤند و همکاران (دوازده هفته) در کاهش آسپروسین

بحث

هدف تحقیق حاضر تعیین اثر شش هفته HICFT بر آسپروسین سرمی ناشتا، مقاومت به انسولین و درصد چربی بدن در مردان مبتلا به دیابت نوع دو بود. نتایج تحقیق نشان داد که پس از دو گروه تمرین، کاهش معناداری در آسپروسین سرمی (۱/۶۵) نانوگرم بر میلی‌لیتر) در بدن (۲/۴۵ درصد) و مقاومت به انسولین (۰/۹۶ واحد) در

انرژی [۳۱، ۳۲] است. در نتیجه تمرینات ورزشی موجب بهبود انعطاف‌پذیری متابولیکی در بیماران مبتلا به دیابت نوع دو می‌شود و می‌تواند از عوارض دیابت نوع دو از جمله عوارض کاردیومتابولیک جلوگیری کند [۳۳]. از طرفی گزارش شده است که آسپروسین یک هورمون مرتبط با اشتها با اثر مرکزی است که اشتها را افزایش می‌دهد و در نهایت منجر به چاقی و افزایش وزن می‌شود [۶]. می‌توان این احتمال را داد که تمرینات HICFT با اثرات مثبتی که روی آسپروسین سرمی داشته، بتواند با اثر بر اشتها بیماران و در نتیجه کنترل وزن بهتر، اثرات مرتبط با چاقی ناسالم از نظر متابولیکی را در بیماران دیابتی تعديل کند که نشان‌دهنده نیاز به تحقیقات بیشتر در این خصوص است. گزارش شده است که کنترل ضعیف دیابت نوع دو به دلیل افزایش استرس اکسیداتیو و واسطه‌های التهابی موجب کاهش سلول‌های β پانکراس می‌شود [۳]. مدل‌های مختلفی برای توضیح کاهش عملکرد سلول‌های β ، از جمله کاهش تعداد سلول‌های β ، فرسودگی سلول‌های β و تمايز زیایی به سایر انواع سلول‌ها پیشنهاد شده‌اند [۳۴]. به تازگی گزارش شده است که ترکیب آسپروسین مشتق شده از پالمیتات از سلول‌های β منجر به التهاب و اختلال عملکرد آنها از طریق یک مسیر با واسطه TLR4/JNK و التهاب می‌شود [۲۷]. بر همین اساس HICFT می‌توان این احتمال را داد که مداخله تمرین با اثرات مثبتی بر حفاظت سلول‌های β داشته باشد. با این وجود در تحقیق ما استرس اکسیداتیو و فاکتورهای التهابی اندازه‌گیری نشدنده که از محدودیت‌های تحقیق حاضر بودند. بر همین اساس پیشنهاد می‌شود که در تحقیقات آینده متغیرهای مرتبط با استرس اکسیداتیو و همچنین عوامل آنتی‌اکسیدانی آنزیمی و غیرآنزیمی و سایتوکین‌های التهابی و ضدالتهابی نیز علاوه بر متغیرهای تحقیق حاضر بررسی شوند. همچنین پیشنهاد می‌شود در تحقیقات آینده از آزمودنی‌ها با سطوح مختلف وضعیت گلیسمی شامل افراد سالم، پیش‌دیابت و بیماران مبتلا به دیابت نوع دو استفاده شود.

نتیجه‌گیری

شش هفته HICFT موجب کاهش درصد چربی بدن، کاهش آسپروسین ناشتا و همچنین کاهش مقاومت به انسولین در مردان مبتلا به دیابت نوع دو می‌شود. با توجه به اینکه منبع ترکیب آسپروسین، بافت چربی است، می‌توان کاهش آسپروسین سرمی را به بهبود ترکیب بدن در سازگاری با HICFT توجیه کرد. از طرفی آسپروسین یک آدیبوکین گلوكوتینیک است که موجب هومتوستاز گلوكز می‌شود که در بیماران مبتلا به دیابت نوع دو به دلیل پاتولیزیولوژیک افزایش می‌یابد. با توجه به محور فیدبک ترکیب آسپروسین که در ارتباط با بافت چربی، هیپوتalamوس و کبد به عنوان گیرنده آسپروسین است؛ می‌توان گفت

سرمی در مردان مبتلا به دیابت نوع دو ایجاد کند. گزارش شده است که آدیپوسیت‌ها منبع اصلی سنتز و ترکیب آسپروسین در خون هستند [۵]. همچنین نتایج تحقیق ما همسو با نتایج تحقیق *Akbulut* و همکاران بود که گزارش کرده‌اند، تمرینات هوازی با شدت متوسط و شدت بالا می‌تواند موجب کاهش معناداری در سطوح آسپروسین و گلوكز ناشتا شود [۲۰]. در تحقیق ما برخلاف این دو تحقیق که فقط به بررسی متغیرهای خونی پرداخته بودند؛ تغییرات درصد چربی نیز بررسی شد و نتایج نشان‌دهنده کاهش درصد چربی به عنوان یک متغیر مرتبط با ترکیب بدنی بود. می‌توان کاهش آسپروسین سرمی در تحقیق حاضر را به کاهش درصد چربی بدن و بهبود ترکیب بدنی متعاقب تمرینات HICFT نسبت داد. عنوان شده است که آسپروسین در ارتباط با چاقی است [۲۵] که می‌تواند تحت تأثیر تمرینات ورزشی قرار گیرد. با این وجود در تحقیقی که توسط *Huang* و همکاران انجام شده است، تفاوت معناداری در آسپروسین سرم بین گروه‌های بی‌تحرک و ورزش گزارش نکرده‌اند [۲۱] که با نتایج تحقیق ما همخوانی ندارد. ممکن است علت این ناهمخوانی به خاطر تفاوت در ویژگی‌های آزمودنی‌ها از نظر سطوح پایه آسپروسین باشد.

آسپروسین موجب تحریک تولید گلوكز کبدی می‌شود، از سد خونی مغزی عبور می‌کند و مرکز اشتها را تحریک می‌کند، همچنین باعث آزادسازی گلوكز کبدی از طریق مسیر پروتئین G-آدنوزین متوفسفات-پروتئین کیناز A حلقوی می‌شود [۲۶]؛ آسپروسین باعث التهاب، اختلال در عملکرد سلولی، آپوپتوز و کاهش تولید انسولین ناشی از گلوكز در سلول‌های β از طریق تنظیم مجدد مسیر با واسطه TLR4/JNK می‌شود [۲۷]. می‌توان گفت که کاهش معنادار در سطح آسپروسین سرمی ناشتا در تحقیق حاضر در ارتباط با افزایش حساسیت به انسولین و در نتیجه کنترل قند خون بهتر در سازگاری به تمرینات HICFT و همکاران نیز در تحقیقشان پس از شش هفته تمرین فانکشنال شدت بالا، افزایش معناداری در حساسیت به انسولین بیماران مبتلا به دیابت نوع دو گزارش کرده‌اند [۲۳]. با توجه به اینکه آسپروسین از بافت چربی ترکیب که با بهبود ترکیب بدنی و در نتیجه کاهش درصد چربی بدن میزان ترکیب آسپروسین کاهش می‌یابد [۲۱] و همین مکانیسم موجب کنترل قند خون بهتر در بیماران دیابتی پس از برنامه تمرینی می‌شود. کاهش مقاومت به انسولین در سازگاری به تمرینات ورزشی منظم تحت تأثیر عوامل مختلفی از جمله انعطاف‌پذیری متابولیکی به خاطر تعديل هورمون‌های مرتبط با ترکیب گلوكز کبدی مانند گلوكاگون و همچنین بهبود سیگنالینگ انسولین در بافت‌های حساس به انسولین [۲۸، ۲۹] به علت کاهش رادیکال‌های آزاد و فاکتورهای التهابی [۳۰]، بهبود ترکیب بدنی آزاد و تغییرات در ترکیب سایتوکین‌های مرتبط با متابولیسم

استفاده کنند. تشرک و قردانی: مقاله حاضر بخشی از رساله دکتری نویسنده اول است؛ نویسنده‌گان از تمامی کسانی که در انجام این تحقیق همکاری کرده‌اند، کمال تشکر و قردانی را به عمل می‌آورند.

تعارض منافع: بین‌وسیله نویسنده‌گان مقاله تصريح می‌نمایند که هیچ‌گونه تعارض منافعی در قبال مطالعه حاضر وجود ندارد.

سهم نویسنده‌گان: نویسنده اول، ارائه ایده و طراحی مطالعه، جمع‌آوری داده‌ها، تجزیه و تحلیل داده‌ها؛ نویسنده دوم، ارائه ایده، تجزیه و تحلیل داده‌ها، نویسنده سوم، ارائه ایده؛ همه نویسنده‌گان در نگارش اولیه مقاله و بازنگری آن سهیم بودند و همه با تأیید نهایی مقاله حاضر، مسئولیت دقت و صحت مطالب مندرج در آن را می‌پذیرند.

منابع مالی: مقاله حاضر هیچ‌گونه حامی مالی نداشت.

که یک دوره کوتاه مدت HICFT موجب بهبود محور ترشح آسپروسین و در نتیجه هومئوستاز بهتر گلوكز در دیابت نوع دو می‌شود. بر همین اساس می‌توان تمرینات HICFT را به عنوان یک مداخله مؤثر در کاهش مقاومت به انسولین در دیابت نوع دو معرفی کرد.

نکات بالینی و کاربردی در طب انتظامی: با توجه به اینکه افراد نظامی و انتظامی نیز به علت سبک زندگی امروزی از جمله تغییر تغذیه و سطح فعالیت بدنی و همچنین استرس محیط کاری در معرض ابتلا به اختلالات متابولیکی از جمله چاقی و دیابت نوع دو هستند؛ بر همین اساس پیشنهاد می‌شود که تمرینات ورزشی منظم با هدف ارتقای سلامت متابولیک خود انجام دهند. همچنین پرسنل فرماندهی انتظامی می‌توانند از پروتکل تمرینی حاضر به عنوان یکی از روش‌های نوین تمرینی در پیشگیری و درمان اختلالات متابولیکی مانند چاقی و مقاومت به انسولین

Reference

1. Ghalavand A, Shakerian S, Zakerkish M, Shahbazian H, Monazam NA. The effect of resistance training on anthropometric characteristics and lipid profile in men with type 2 diabetes referred to Golestan hospital. *Jundishapur Sci Med J*. 2015;13(6):709-20. https://jsmj.ajums.ac.ir/article_52171.html
2. Pasdar Y, Moridi S, Najafi F, Niazi P, Heidary M. The effect of nutritional intervention and physical activities on weight reduction. *Behbood J*. 2012;15(6):427-34. <https://www.sid.ir/paper/20977/en>
3. Kratz M, Baars T, Guyenet S. The relationship between high-fat dairy consumption and obesity, cardiovascular, and metabolic disease. *Eur J Nutr*. 2013;52(1):1-24. <https://doi.org/10.1007/s00394-012-0418-1>
4. Strasser B. Physical activity in obesity and metabolic syndrome. *Ann N Y Acad Sci*. 2013;1281(1):141-59. <https://doi.org/10.1111/j.1749-6632.2012.06785.x>
5. Ghalavand1 A, Mohammadpour M, RahmaniGhobadi M, Motamed1 P, Hovsepian A. Changes in the serum levels of metabotropic biomarkers (asprosin and BDNF) in adapting to intermittent aerobic training. *Ilam*. 2023;31(2):86-96. <http://sjimu.medilam.ac.ir/article-1-7675-en.html>
6. Duerrschmid C, He Y, Wang C, Li C, Bournat JC, Romere C, et al. Asprosin is a centrally acting orexigenic hormone. *Nat Med*. 2017;23(12):1444-53. <https://doi.org/10.1038/nm.4432>
7. Zhang X, Jiang H, Ma X, Wu H. Increased serum level and impaired response to glucose fluctuation of asprosin is associated with type 2 diabetes mellitus. *J Diabetes Investig*. 2020;11(2):349-55. <https://doi.org/10.1111%2Fjdi.13148>
8. Long W, Xie X, Du C, Zhao Y, Zhang C, Zhan D, et al. Decreased circulating levels of asprosin in obese children. *Horm Res Paediatr*. 2019;91(4):271-7. <https://doi.org/10.1159/000500523>
9. Ugur K, Aydin S. Saliva and blood asprosin hormone concentration associated with obesity. *Int J Endocrinol*. 2019;2019. <https://doi.org/10.1155/2019/2521096>
10. Wang Y, Qu H, Xiong X, Qiu Y, Liao Y, Chen Y, et al. Plasma asprosin concentrations are increased in individuals with glucose dysregulation and correlated with insulin resistance and first-phase insulin secretion. *Mediators Inflamm*. 2018. <https://doi.org/10.1155/2018/9471583>
11. Groener JB, Valkanou A, Kender Z, Pfeiffenberger J, Kihm L, Fleming T, et al. Asprosin response in hypoglycemia is not related to hypoglycemia unawareness but rather to insulin resistance in type 1 diabetes. *PloS one*. 2019;14(9):e0222771. <https://doi.org/10.1371/journal.pone.0222771>
12. shirmohamadzade M, ghorbanzadeh B, gorbanian B, saberi y. Examining the musculoskeletal condition and physical fitness related to the health of physical protection personnel. *J Police Med*. 2022;11(1):1-12. <https://jpmmed.ir/article-1-1106-en.html>
13. Kumar AS, Maiya AG, Shastry B, Vaishali K, Ravishankar N, Hazari A, et al. Exercise and insulin resistance in type 2 diabetes mellitus: a systematic review and meta-analysis. *Ann Phys Rehabil Med*. 2019;62(2):98-103. <https://doi.org/10.1016/j.rehab.2018.11.001>
14. Ghalavand A, Ghobadi MR. Effect of exercise and insulin signaling on glucose transporter type 4 in skeletal muscles: A narrative review. *J Shahid Sadoughi Uni Med Sci*. 2023;31(1):6244-57. <http://dx.doi.org/10.18502/ssu.v31i1.12329>
15. Da Silva DE, Grande AJ, Roever L, Tse G, Liu T, Biondi-Zocca G, et al. High-intensity interval training in patients with type 2 diabetes mellitus: A system-

atic review. *Curr Atheroscler Rep.* 2019;21(2):8. <https://doi.org/10.1007/s11883-019-0767-9>

16. Jiménez-Maldonado A, García-Suárez PC, Rentería I, Moncada-Jiménez J, Plaisance EP. Impact of high-intensity interval training and sprint interval training on peripheral markers of glycemic control in metabolic syndrome and type 2 diabetes. *Biochim Biophys Acta Mol Basis Dis.* 2020;1866(8):165820. <https://doi.org/10.1016/j.bbadic.2020.165820>

17. Nieuwoudt S, Fealy CE, Foucher JA, Scelsi AR, Malin SK, Pagadala M, et al. Functional high-intensity training improves pancreatic β -cell function in adults with type 2 diabetes. *Am J Physiol-Endocrinol Metab.* 2017;313(3):E314-E20. <https://doi.org/10.1152/ajpendo.00407.2016>

18. Angelica JJ, Pathmanathan K. The effect of high-intensity intermittent functional training towards the aerobic fitness of youth badminton players. 2020;42:53. http://dx.doi.org/10.1007/978-981-15-3270-2_5

19. de la Motte SJ, Clifton DR, Gribbin TC, Beutler AI, Deuster PA. Functional movement assessments are not associated with risk of injury during military basic training. *Mil Med.* 2019;184(11-12):e773-e80. <https://doi.org/10.1093/milmed/usz118>

20. Akbulut T, Cinar V, Ugur K, Yardim M, Karagoz Z, Aydin S. Effect of regular exercise on the levels of subfatin and asprosin: a trial with different types of exercise. *Eur Rev Med Pharmacol Sci.* 2022;26(8):2683-91. https://doi.org/10.26355/eurrev_202204_28598

21. Huang R, Song C, Li T, Yu C, Yao T, Gao H, et al. A cross-sectional comparative study on the effects of body mass index and exercise/sedentary on serum asprosin in male college students. *Plos one.* 2022;17(4). <https://doi.org/10.1371/journal.pone.0265645>

22. Ghalavand A, Delaramnasab M, Afshounpour M, Zare A. Effects of continuous aerobic exercise and circuit resistance training on fasting blood glucose control and plasma lipid profile in male patients with type II diabetes mellitus. *J diabetes Nurs.* 2016;4(1):8-19. <http://dorl.net/dor/20.1001.1.23455020.1394.4.1.1.4>

23. Fealy CE, Nieuwoudt S, Foucher JA, Scelsi AR, Malin SK, Pagadala M, et al. Functional high-intensity exercise training ameliorates insulin resistance and cardiometabolic risk factors in type 2 diabetes. *Exp physiol.* 2018;103(7):985-94. <https://doi.org/10.1113/ep086844>

24. Hoffman J. Norms for fitness, performance, and health: Human Kinetics. 2006. <https://www.worldcat.org/title/norms-for-fitness-performance-and-health/oclc/61513011>

25. Ceylan Hı, Saygın Ö. An investigation of the relationship between new fasting hormone asprosin, obesity and acute-chronic exercise: current systematic review. *Arch Physiol Biochem.* 2020;1-12. <https://doi.org/10.1080/13813455.2020.1767652>

26. Yuan M, Li W, Zhu Y, Yu B, Wu J. Asprosin: a novel player in metabolic diseases. *Front Endocrinol.* 2020;11:64. <https://doi.org/10.3389/fendo.2020.00064>

27. Lee T, Yun S, Jeong JH, Jung TW. Asprosin impairs insulin secretion in response to glucose and viability through TLR4/JNK-mediated inflammation. *Mol Cell Endocrinol.* 2019;486:96-104. <https://doi.org/10.1016/j.mce.2019.03.001>

28. Holloszy JO. Exercise-induced increase in muscle insulin sensitivity. *J Appl Physiol.* 2005;99(1):338-43. <https://doi.org/10.2337/db16-1327>

29. Jokar M, Ghalavand A. The effect of twelve weeks of aerobic interval training on liver complications and cardiovascular risk factors in men with type 2 diabetes. *Razi J Med Sci.* 2022;29(3). <http://dorl.net/dor/20.1001.1.22287043.1401.29.3.10.5>

30. Hosseinpour Delavar S, Boyerahmadi A, Soleymani A, Ghalavand A. Effect of eight weeks of aerobic interval training and urtica dioica supplement on some inflammatory indicators and glycemic control in men with type 2 diabetes. *Jundishapur Sci Med J.* 2020;19(2):123-35. <https://doi.org/10.22118/jsmj.2020.200813.1814>

31. Ghalavand A, Delaramnasab M, Afshounpour M, Zare A. Effects of continuous aerobic exercise and circuit resistance training on fasting blood glucose control and plasma lipid profile in male patients with type II diabetes mellitus. *J Diabetes Nurs.* 2016;4(1):8-19. <http://jdn.zbmu.ac.ir/article-1-146-en.html>

32. Sgrò P, Emerenziani GP, Antinozzi C, Sacchetti M, Di Luigi L. Exercise as a drug for glucose management and prevention in type 2 diabetes mellitus. *Curr Opin Pharmacology.* 2021;59:95-102. <https://doi.org/10.1016/j.coph.2021.05.006>

33. Rentería I, García-Suárez PC, Martínez-Corona DO, Moncada-Jiménez J, Plaisance EP, Jiménez-Maldonado A. Short-term high-Intensity interval training increases systemic brain-derived neurotrophic factor (BDNF) in healthy women. *Eur J Sci.* 2020;20(4):516-24. <https://doi.org/10.1080/17461391.2019.1650120>

34. Wysham C, Shubrook J. Beta-cell failure in type 2 diabetes: mechanisms, markers, and clinical implications. *Postgrad Med.* 2020;132(8):676-86. <https://doi.org/10.1080/00325481.2020.1771047>