

ORIGINAL ARTICLE**OPEN ACCESS****Comparison of the Effect of Circular Resistance Training and Intense Functional Training on the Physical Performance of Military Forces**

Dariush Nasiri¹ MSc Student, **Mohammad Reza Izadi**^{1*} PhD, **Ahmad Reza Yousefpour Dehaqani**¹ PhD Candidate, **Morteza Naji**¹ PhD

¹ Department of Physical Education & Sports Sciences, Faculty of Social & Cultural Sciences, Imam Hossein University, Tehran, Iran.

ABSTRACT

AIMS: The nature of military activity requires that a military person always have cardio-respiratory fitness and sufficient strength. The present study was conducted to compare the effect of circular resistance and intense functional training on the physical performance of military forces.

MATERIALS AND METHODS: In this semi-experimental study with a pre-test-post-test design, among all the male military forces of an operational military center in Ahvaz, Iran 45 people were selected as available and were randomly assigned to three groups: intense functional training, circuit resistance training, and the control group. In the pre-test level, measurements of height, weight, maximum oxygen consumption, and anaerobic power were performed and then the training level began. The training protocol consisted of eight weeks and three training sessions each week. Finally, 24 hours after the end of the training phase, at the post-test level, the desired measurements were performed again. Data were analyzed by dependent t, covariance, and Bonferroni post hoc test using SPSS 19 software.

FINDINGS: The results showed that there was no significant difference between the groups in the variables of age, height, and weight, and the groups were homogeneous in these three variables. Intense functional training and circular resistance training had a significant effect on increasing aerobic power ($p<0.05$) and increasing anaerobic power ($p<0.05$). The results indicated a significant improvement in aerobic and anaerobic power indices due to HIFT training compared to circular resistance training ($p<0.05$).

CONCLUSION: The results of the present study showed that both types of HIFT and circular resistance training increase aerobic capacity, improve anaerobic capacity, and improve the endurance of military forces. In general, the results of the present study emphasize the importance of HIFT training compared to circular resistance training on the physical performance of military forces.

KEYWORDS: **Resistance Training; Physical-functional fitness; Military Personnel**

How to cite this article:

Nasiri D, Izadi MR, Yousefpour Dehaqani AR, Naji M. *Comparison of the Effect of Circular Resistance Training and Intense Functional Training on the Physical Performance of Military Forces.* J Police Med. 2023;12(1):e20.

***Correspondence:**

Address: Department of Physical Education and sport Sciences, Faculty of Social and Cultural Sciences, Imam Hossein University, Tehran, Iran, Postal Code: 1698715861
Mail: izadi.mreza@gmail.com

Article History:

Received: 05/04/2023
Accepted: 30/10/2023
ePublished: 10/11/2023

Comparison of the Effect of Circular Resistance Training and Intense Functional Training on the Physical Performance of Military Forces

INTRODUCTION

Military organizations and armies always consider their workforce the most valuable treasure and powerful tool for victory [1]. Defeat or victory in a battle scene, in addition to weapons and technology, depends on the physical and mental health and the level of physical fitness of the forces. The military has always played an important role in battle [1, 2]. All kinds of strength, endurance, and combined training improve the practical readiness of military force. Complete preparation leads to a person performing best under weather and environmental conditions. Combat fitness comes from exercises that develop physical skills and bodybuilding exercises that increase strength and endurance [2, 3].

The nature of military activity requires the military force to be physically fit in peacetime or wartime. Military missions, especially on the battlefield, require high physical fitness. Also, exposure to various environmental and temperature conditions strengthens this level of military training. Based on this, physical activity and training programs to achieve physical and mental health are the main foundation of all military training in different parts of the world and play a very important role in the emergence of latent talents [1-3]. Despite the effectiveness of traditional resistance training programs in developing muscle strength, modern resistance training, in addition to improving muscle strength, also improves strength in endurance and speed [4]. The American College of Sports Medicine recommends two to four sets of 8 to 12 repetitions per major muscle group for beginners (with approximately 60% of one repetition max on two to three non-alternating days per week). Also, 2-3 minutes of rest between sets is recommended for proper recovery. This recommendation often increases muscle strength, endurance, and hypertrophy among untrained individuals [5]. Another type of training, which is called circular training, strengthens the cardiovascular and muscular systems due to the nature of strength and endurance. In addition, due to the issue of time efficiency and the effectiveness of training in improving aerobic and anaerobic capacity, circuit training is used in shorter training sessions instead of traditional strength training [1]. Like traditional strength training, traditional circuit training follows specific reps, sets, and rest schedules using resistance or body weight [5]. Circuit-based training programs have gained popularity due to their practicality and efficiency with limited time. A combination of cardiovascular and resistance training in a higher-intensity limited-rest design has been reported to result in numerous health and fitness

benefits in less time than traditional programs [6]. In addition, *Chtara et al.* (2008) reported that a 12-week low-frequency circuit resistance training program improved muscle strength, endurance, and power [7].

In addition to resistance training, today, high-intensity functional training (HIFT), also known as Cross Fit, is used among various people. HIFT utilizes a variety of sports activities, such as monostructural movements (such as running and rowing), weight-bearing exercises (squats and Swedish swimming), and weightlifting derivatives (shoulder press, deadlift) [8]. Unlike intense interval training that relies on single activities such as running, HIFT emphasizes functional, multi-joint exercises that can be adjusted for any fitness level and produce greater muscle recruitment with aerobic and strength-muscular exercise activities [8, 9]. HIFT is a relatively new training model that has recently appeared in the fitness industry. Attention to HIFT may be mainly due to participants' strong empathy, which increases adherence to the exercise program compared to traditional resistance training methods [10]. Various studies have acknowledged the high caloric expenditure rate of HIFT exercises similar to that of intense circuit training [8, 9]. From a physiological point of view, studies such as *Banaszek* (2018) and *Brisebois* (2018) suggest that HIFT may improve body composition [11, 12] and, according to *Marin et al.* (2018), increase aerobic capacity [12,13], while *Andersen* (2005) believes, this type of training also increases absolute and relative strength [10].

Strength training, in turn, improves muscle strength, provides better support for muscles and joints, and improves a person's body composition. These exercises, with mechanisms related to hypertrophy, develop the strength and structure of small and large muscles [15]. Researchers believe that strength or resistance training improves a person's general balance by improving skeletal stability and proprioception [16]. Studies have shown that these exercises can reduce the negative effects of endurance training, such as oxidative stress, increased inflammation, increased cortisol levels, and muscle disorders [17, 18]. Suppose resistance training is combined with cardio-respiratory strengthening exercises in the form of circular resistance exercises in athletes, especially military forces. In that case, it can prevent injuries and rehabilitate existing injuries in addition to improving aerobic and anaerobic efficiency [18]. Intense functional training has been identified as a valuable and appropriate training program for military forces [19, 20], and it has been reported how programs that combine aspects of resistance

training with aerobic and body weight training have the potential to be more effective than traditional military training. They are perfect for improving anaerobic and aerobic capacity in more time. Hinrich et al. investigated the effects of a traditional military physical training program and a circuit-style HIFT program among active duty military forces. After eight weeks of training, the circuit-style HIFT program group significantly increased their strength, aerobic capacity, and flexibility compared to the traditional military physical training group [9]. Although in the military, few studies have been published examining the effects of HIFT on some aspect of health-related fitness or comparing the effects of HIFT to traditional resistance training, a search of databases by the researcher found no studies comparing HIFT training and circular resistance exercises in the military forces. Therefore, given that HIFT and circuit resistance training are both used as efficient methods to improve health and fitness and share some basic principles, including repeated activities with short brief rests, in this study, the effect of these exercises on the physical performance of military forces were examined so that the best training program can be achieved in order to improve their physical fitness.

MATERIALS & METHODS

The current study is a semi-experimental research with a pre-test-post-test design with two experimental and one control group. The statistical population of this research was all male military forces of an operational military center in Khuzestan province in Iran, with 400 people. The number of samples in this research was calculated based on G Power 3.1.9.2 software. The minimum sample size was 36 people (twelve people in each group) using an alpha of 5%, a beta of 80%, and an effect size of 0.30. The samples were selected as available and randomly placed in 3 groups: intense functional training, circuit resistance training, and control. The inclusion criteria for this research are healthy young men aged 30-35 years, body mass index between 20 and 24.9 kg/m², not having any cardiovascular disease, diabetes, orthopedic/neural limitations, not having depression according to the Beck Depression Questionnaire, non-smoking and non-use of special drugs. People injured during the study who could not complete the exercise program or had more than two consecutive absent sessions were excluded from the study process. It was also explained to people that they can withdraw from the research process if they do not want to continue cooperation. A Seka digital scale was used to measure the weight of the samplings, and a tape measure was used to

measure the height of the samplings. In addition, the Rockport walking test was used to measure the maximum oxygen consumption. The Rockport Walking Test was administered by asking samples to walk one mile (1.6 km) as fast as possible. Before the test, the samples did 5 to 10 minutes of light stretching. The samples' pulse was taken for one minute, and as soon as the test was finished (counting the pulse by touching the carotid artery in 15 seconds and multiplying it by 4 to calculate the number of beats per minute). Also, the RAST training protocol was used to perform anaerobic power. The protocol consisted of 6 levels of 35 m running at maximum speed with 10 seconds of rest between each level. The samples first warmed up their bodies for 10 minutes. The duration of the RAST test at each level was recorded in seconds and hundredths of a second at a distance of 35 meters in the sports hall. Each sample started to move from the starting line, and the timer stopped after crossing the finish line. After 10 seconds, the second round of running started. Each sample covered a distance of 35 meters six times at full speed, and the time for each step was recorded. In this study, the individual's maximum power was obtained using the highest numerical value obtained from the RAST test regarding watts. For this purpose, the relationship between the square of the distance covered and the cube of the elapsed time to cover a distance of 35 meters was used. Also, the minimum power obtained from the RAST test, in watts, was considered using the relationship of weight multiplied by the ratio of the square of the distance traveled by the cube of the time spent in the distance of 35 meters. Since people had to walk a distance of 35 meters six times while performing the RAST test, the sum of each of the powers obtained in each step was divided by six, which indicated the average power of the person under investigation [21]. In a briefing session that was held one week before the start of the training protocols, all plans, possible benefits, and risks, the correct way of performing circular resistance exercises and intense performance were explained to the participants, and considering the training intervention in this research and preventing interference effects with drugs. The samples were asked to avoid taking any drugs during the training period, especially blood pressure-lowering drugs, and to report if they did. Of course, during the implementation of the research, all the samples were controlled under the supervision of a specialist doctor to avoid any possible risks.

After familiarizing the samples with the work implementation levels, they were randomly divided into three groups (circular resistance exercises,

Comparison of the Effect of Circular Resistance Training and Intense Functional Training on the Physical Performance of Military Forces

intense functional exercises, and control). At first, in the pre-test level, measurements of height, weight, maximum oxygen consumption, and anaerobic capacity were measured from 8:00 a.m. to 10:00 a.m. in the sports hall of one of the operational centers of Khuzestan province in Iran. After the pre-test level, the practice began. The training phase was carried out in eight weeks and three sessions per week (from 8 to 10 a.m.) in the sports hall of one of the operational centers of Khuzestan province. During this time, the control group did their daily activities, and the training groups implemented the designed training protocols. During the training program's implementation, the training overload principle was also controlled by increasing the intensity and volume of the training pyramid. The exercise protocol of the present study was taken from the research of Banaszek et al. (2019) [11] (Tables 1 and 2). In this training protocol, in all weeks and all sessions, the time of each movement was 40 seconds, each movement was three repetitions, and rests were 20 seconds between each repetition and 60 seconds between each station.

Table 1) Characteristics of the components of intense functional exercises

Variable	Characteristic
Performed Activities	Integrated resistance exercises, including upper and lower limb simultaneous exercises, multi-planar movements, central stability exercises, movement coordination and balance.
Intensity	week 1-8; Pressure perception index 6-7 (0-10)
Volume Course. Method	Circuit design with 8 stations (exercise), 40 seconds of exercise, 20 seconds of rest, 3 repetitions, 25 minutes total

The circuit resistance training protocol was designed and implemented for eight weeks and three sessions each week based on the study of Sobrero et al. (2017) [5]. The levels of circular resistance training were: ten minutes of warm-up in the form of low-intensity running, about 60% of the maximum heart rate and stretching movements at the beginning of the session, a specific training protocol, and finally, ten minutes of soft running and stretching movements at the end of each training session. The resistance training protocol was designed circularly, including eight stations. A few days before the test, briefing sessions were held to get familiar with the training stations, the correct principles of weight training, the volume and intensity of training, the number of repetitions and rest time between machines and courses, and a maximum repetition of the desired movements for the first four weeks and the second four weeks were measured at the end of the fourth week using the indirect method and the Brzycki formula. The resistance training program, based on the scientific

principles of circular resistance training design and the scientific principles of sports physiology, began with the use of large body muscles and ended with the exercise of smaller body muscles in the form of one upper body movement and one lower body movement (Table 3). 24 hours after the end of the training level, in the post-test, measurements of aerobic power and anaerobic power were performed from 8 to 10 a.m. in the sports hall of the studied military center.

Table 2) Protocols of intense functional exercises

Weeks	Exercise	Type of exercise
1 and 5	Sit-to-stand with elbow flexion	body weight
	Push-ups	body weight
	Crunches with rotation	body weight
	Dumbbell swing	No body weight
	Front pulldown with squat	Elastic bands
	Good morning	No body weight
	Side-lying hip abduction	body weight
	Airplane	body weight
	Upright row with sumo squat	body weight
	Dumbbell fly with pelvic elevation	No body weight
	Elastic trunk rotation	Elastic bands
2 and 6	Front raise with side lunge	No body weight
	Suspended row	body weight
	Knee flexion with elbow flexion	body weight
	Trunk lateral flexion	body weight
	Single leg balance with eyes closed	body weight
	Squat thruster	body weight
	Hip flexion with elbow flexion	Elastic bands
	Ball crunch	body weight
3 and 7	Side lateral raise with lunge	body weight
	Horizontal row	Elastic bands
	Stiff leg deadlift	No body weight
	Bench press	body weight
	Single leg balance with eyes closed	body weight
	Standing bench press	body weight
	Sumo squat	body weight
	Horizontal row	body weight
4 and 8	Crunch	body weight
	Push forward	body weight
	Hips extension	body weight
	Shoulder abduction/adduction	body weight
	Trunk rotation	body weight

Ethical Permission: All the levels of the present study were carried out according to the ethics guidelines in biomedical research with the ethics ID IR.US.PSYEDU.REC.1402.062. The participants were assured that their personal information would be kept confidential by the researchers and would be reported in a general form. They were also allowed to withdraw at any level of the training if they did not want to continue cooperation. All samples were given a consent form to voluntarily

declare their readiness to participate in the training protocols.

Statistical analysis: Descriptive statistics were used to calculate central and dispersion indices. The Shapiro-Wilk test was used to check the normality of the data. In the inferential statistics section,

covariance analysis and the Bonferroni post hoc test were used to compare between groups, and the dependent t-test was used to examine intragroup effects. Data analysis was done using SPSS 22 software at a significance level of 0.05.

Table 3) Circular resistance training protocol

Week	Basic exercises	Intensity	Set	Repetition	Rest	Cool-down
First	Chest press, leg press, bar pull down (armpit), twin with machine, front arm, back of thigh with machine, lateral release with dumbbell (cross), shoulder with barbell	of one repetition maximum	4 sets	repetitions 8	No rest between reps, 1 minute rest between sets, 15 seconds rest between stations	
Second	Chest press, leg press, bar pull down (armpit), twin with machine, front arm, back of thigh with machine, lateral release with dumbbell (cross), shoulder with barbell	of one repetition maximum	4 sets	repetitions 8	No rest between reps, 1 minute rest between sets, 15 seconds rest between stations	
Third	Chest press, leg press, bar pull down (armpit), twin with machine, front arm, back of thigh with machine, lateral release with dumbbell (cross), shoulder with barbell	of one repetition maximum	4 sets	repetitions 9	No rest between reps, 1.30 minutes rest between sets, 15 seconds rest between stations	
Fourth	Chest press, leg press, bar pull down (armpit), twin with machine, front arm, back of thigh with machine, lateral release with dumbbell (cross), shoulder with barbell	of one repetition maximum	4 sets	repetitions 9	No rest between reps, 1.30 minutes rest between sets, 15 seconds rest between stations	
the fifth	Chest press, leg press, bar pull down (armpit), twin with machine, front arm, back of thigh with machine, lateral release with dumbbell (cross), shoulder with barbell	of one repetition maximum	3 sets	repetitions 10	seconds rest between each rep, 2.5 minutes rest between each set, 15 seconds rest between each station	Gentle jogging and stretching
the sixth	Chest press, leg press, bar pull down (armpit), twin with machine, front arm, back of thigh with machine, lateral release with dumbbell (cross), shoulder with barbell	of one repetition maximum	3 sets	repetitions 10	seconds rest between each rep, 2.5 minutes rest between each set, 15 seconds rest between each station	
the seventh	Chest press, leg press, bar pull down (armpit), twin with machine, front arm, back of thigh with machine, lateral release with dumbbell (cross), shoulder with barbell	of one repetition maximum	2 sets	repetitions 11	seconds rest between each rep- 10 etition, 2.30 minutes rest between each set, 15 seconds rest between each station	
Eighth	Chest press, leg press, bar pull down (armpit), twin with machine, front arm, back of thigh with machine, lateral release with dumbbell (cross), shoulder with barbell	of one repetition maximum	2 sets	repetitions 11	seconds rest between each rep- 10 etition, 2.30 minutes rest between each set, 15 seconds rest between each station	

FINDINGS

The results showed that between the groups in the variables of age ($p=0.46$; $F=0.78$), height ($p=0.63$; $F=0.46$), and weight ($p=0.06$; $F=2.99$) F was no significant difference, and the groups were homogeneous in these three variables (Table 4). Concerning the aerobic capacity index, the results showed that intense functional training had a significant effect on the aerobic capacity of military forces ($p=0.001$), and as a result of this type of training, the average aerobic capacity of military forces from the pre-test (40.60 ± 3.48) to the post-test (50.06 ± 3.03) increased significantly (Table 5). On the other hand, circular resistance training also had a significant effect on the aerobic capacity of military forces ($p=0.003$). In general, the groups of intense functional and circular resistance exercises had higher aerobic capacity than the control group ($p<0.05$). Other results indicated that the intense functional training group had higher aerobic capacity compared to

the circular resistance training group ($p<0.05$) (Table 5).

Concerning the peak anaerobic power index, the results showed that intense functional training significantly affected the peak anaerobic power of military forces ($p=0.001$). As a result of intense functional training, the average peak anaerobic power of military forces increased significantly from the pre-test (598.73 ± 13.23) to the post-test (656.73 ± 20.44) in terms of watts. Also, circular resistance training significantly affected the peak anaerobic power of military forces ($p=0.007$). In general, the groups of intense functional and circular resistance exercises had higher peak anaerobic power than the control group ($p<0.05$). Other results indicated that the intense functional training group had higher peak anaerobic power compared to the circular resistance training group ($p<0.05$) (Table 5).

With the average anaerobic power index, the results showed that intense functional training

Comparison of the Effect of Circular Resistance Training and Intense Functional Training on the Physical Performance of Military Forces

significantly affected the average anaerobic power of military forces ($p=0.001$). As a result of intense functional training, the mean anaerobic power of military forces increased significantly from the pre-test (470.86 ± 16.31) to the post-test (525.13 ± 14.18) in watts. Also, circular resistance training significantly affected the average anaerobic power of military forces ($p=0.001$). In general, the groups of intense functional and circular resistance exercises had a higher average anaerobic power than the control group ($p<0.05$). Other results indicated that the intense functional training group had a higher average anaerobic power than the circular resistance training group ($p<0.05$; **Table 5**).

In connection with the minimum anaerobic power

index, the results showed that intense functional training significantly affected the minimum anaerobic power of military forces ($p=0.001$). As a result of intense functional training, the average minimum anaerobic power in watts increased significantly from the pre-test (326.73 ± 14.34) to the post-test (381.00 ± 15.22). Also, circular resistance training significantly affected the minimum anaerobic power of military forces ($p=0.001$). Compared to the control group, the groups of intense functional and resistance exercises had higher minimum anaerobic power ($p<0.05$). Other results indicated that the intense functional training group had higher minimum anaerobic power than the circular resistance training group ($p<0.05$).

Table 4) Average age, height and weight of samples

Group	Number	Age (years)	Height (cm)	Weight (kg)
Intense functional training	15	32.80 ± 1.89	182.33 ± 3.94	81.06 ± 3.47
Circuit resistance training	15	33.46 ± 1.40	182.13 ± 3.73	83.60 ± 4.88
Control	15	33.33 ± 1.23	181.13 ± 3.29	84.53 ± 3.52

Table 5) Intergroup and intragroup changes of research variables

Variable	Group	Pre-test	Post-test	Intragroup difference		Intergroup differences (Covariance test)		
				t value	p	F value	p	Effect size
Aerobic power	Extreme performance	3.48 ± 40.60	3.03 ± 50.06	8.03-	0.001	36.87	0.001	0.64
	Circular resistance	3.28 ± 40.33	3.01 ± 40.06	3.57-	0.003			
	Control	3.34 ± 39.80	3.39 ± 40.06	0.23-	0.821			
The peak of anaerobic power	Extreme performance	13.23 ± 598.73	20.44 ± 656.73	12.93-	0.001	32.74	0.001	0.61
	Circular resistance	17.04 ± 600.40	19.71 ± 624.86	3.14-	0.007			
	Control	15.68 ± 602.33	14.11 ± 601.86	0.07	0.939			
Average anaerobic power	Extreme performance	16.31 ± 470.86	14.18 ± 525.13	13.03-	0.001	37.16	0.001	0.64
	Circular resistance	13.62 ± 477.33	15.61 ± 496.86	4.14-	0.007			
	Control	12.86 ± 476.86	13.92 ± 479.60	0.47-	0.640			
Minimum anaerobic power	Extreme performance	14.34 ± 326.73	15.22 ± 381.00	15.51-	0.001	46.52	0.001	0.69
	Circular resistance	16.56 ± 322.40	15.11 ± 355.40	6.00-	0.001			
	Control	16.94 ± 322.40	14.29 ± 327.66	0.85-	0.406			

DISCUSSION

The present study was conducted to compare the effect of HIFT and circular resistance exercises on the physical fitness factors of military forces. The results of the present study showed that intense functional training significantly increased the aerobic capacity of military forces. Also, the participants of the intense functional training group had statistically higher aerobic capacity than those of the circular resistance training group. This finding aligns with the study's findings by *Bahremand* et al. [22]. In a study, *Bahremand* et al. compared CrossFit and combined exercises (aerobic + resistance) in myonectin, insulin resistance, and physical performance in healthy young women. The results showed that VO₂max was improved by CrossFit training more than

combined training [22]. Also, in another related research, *Mcweeny* et al. studied the effect of intense functional training and traditional resistance training on improving the aerobic, anaerobic, and musculoskeletal fitness of healthy men and women. The results show that aerobic capacity is improved only in the intense functional training group, and the intense functional training group has higher aerobic fitness than traditional resistance training [23]. However, in a conflicting study, *Sobrero* et al. compared intense functional and circuit training in women.

The results show no change in the aerobic capacity of the two training groups [5]. One of the reasons for this difference in the results can be related to the preparation level of the participants. In the current research, the military employees of the

studied center were selected with low physical activity levels. In the research of *Sobrero* et al., the participants were healthy women active in recreational sports. The results of the present study support the argument of *Kraemmer* et al. regarding the lack of improvement in the aerobic and anaerobic capacity of active men due to intense resistance training programs after 12 weeks [24]. Recently, *Hermassi* et al. have further supported the effectiveness of circuit training programs in high-level athletes by demonstrating significant improvements in muscle strength, power, and throwing speed in a group of handball players over a 10-week competitive season [25]. However, the results of some studies indicate that circular exercises prescribed with the intensity and speed of movement are not optimal for building muscle power and strength and, as a result, sports performance [26]. Exercises using explosive movement patterns and higher loads for the lower body and moderate loads for the upper body (such as high-intensity functional training) are more beneficial because the goal is to produce maximal power during circuit training [27]. Therefore, circuit training programs that use high-intensity interval training (HIFT) and explosive exercises can have even better results in developing physical fitness and aerobic capacity. Other results of the present study showed that intense functional training significantly increased peak anaerobic power, average anaerobic power, and minimum anaerobic power of military forces. Also, the participants of the intense functional training group had statistically higher peak anaerobic power, average anaerobic power, and minimum anaerobic power than the participants of the circular resistance training group. In a study consistent with the results of the present study, *Bahremand* et al. compared CrossFit exercises and combined exercises (aerobic+resistance) and showed that the average anaerobic power and peak anaerobic power improved more as a result of CrossFit exercises than combined exercises [22]. However, the results of the present study could be more consistent with the study of *Mcweeny* et al. The results of his study show that the anaerobic power of the lower body in the participants of traditional exercises is higher than that of intense functional exercises [23]. One of the reasons for the inconsistency is the type of exercise, which in *Mcweeny* et al.'s study was traditional resistance exercise.

In contrast, in the present study, it was a circular resistance exercise. In addition, in the current research, the samples included military forces (inactive men). While in *Mcweeny* et al.'s research, the samples included healthy men and women, this gender difference (especially the male samples

participating in *Mcweeny* et al.'s research) can be one of the reasons for improving anaerobic power due to traditional resistance exercises. Although the participants of intense functional training compared to circuit resistance training in the present study had higher anaerobic power, in a discordant study by *Sobrero* et al., no change in anaerobic capacity was observed between the two training groups [22]. One of the reasons for this difference can be related to the preparation level of the participants.

The main advantage of HIFT is that it can target several systems in the body in one session by increasing aerobic and anaerobic capacity, endurance, strength, and muscle power while positively affecting body composition and work capacity [8, 28]. Similar interventions have shown positive results in athletes [25], and a recent study showed that HIFT produced similar improvements in 5 km performance in recreational runners using a shorter duration [29]. The multimodal nature of HIFT could provide an efficient alternative to traditional circuit and resistance training. Among the limitations of the current research are the researcher's inability to control all the internal and external risk factors of injury and the lack of precise control of the nutrition of the research samples. It is suggested that the acute effect of intense functional and circular resistance exercises on the physical performance and obstacle field test of military forces be compared in future research. Also, the effect of these two types of exercise on cardiac risk factors, glucose, and insulin sensitivity of military forces should be compared.

CONCLUSION

Based on the results, compared to the control group, both types of HIFT and circular resistance exercises increase aerobic power, improve anaerobic capacity, and improve the endurance of military forces. The results of the present study show that HIFT exercises are probably more effective than circular resistance exercises on the physical performance and combat power of military forces. Also, military trainers are advised that according to the time conditions, they should use intense functional training rather than circular resistance exercises to improve the aerobic and anaerobic capacity of the military forces.

Clinical & Practical Tips in POLICE MEDICINE: Performing HIFT and circular resistance exercises can increase aerobic capacity, improve anaerobic capacity, and improve the endurance of military forces and especially police operational forces in all kinds of pursuits and other missions. Carrying out this type of exercise

Comparison of the Effect of Circular Resistance Training and Intense Functional Training on the Physical Performance of Military Forces

and creating training in the mission scene delays the process of causing cardiovascular injuries in the forces with long service history and the retired forces. HIFT training can be the best way to improve physical fitness, neuromuscular coordination, and agility for police entry in various international military competitions.

Acknowledgments: This article is a part of the master's thesis of the first author. The authors thank all those who have cooperated in this research.

Conflict of interest: The authors stated that the present study has no conflict of interest.

Authors' Contribution: Mohammadreza Izadi, Ahmadreza Yousefpour, and Morteza Naji; Presenting the idea and design of the study, data collection, and statistical data analysis; Daryoosh Nasiri, data interpretation and data collection; Daryoosh Nasiri and Mohammad Reza Izadi collected data and analyzed data; All the authors participated in the initial writing of the article and its revision, and all accept the responsibility for the accuracy and correctness of the contents of this article with the final approval of this article.

Financial Sources: This study had no financial support.

نشریه طب انتظامی

۶ دسترسی آزاد

مقاله اصیل

مقایسه اثر تمرینات مقاومتی دایره‌ای و تمرینات عملکردی شدید بر عملکرد جسمانی کارکنان نظامی

داریوش نصیری^۱، محمدرضا ایزدی^۱، PhD Candidate^۱، احمد رضا یوسف‌پور دهاقانی^۱، مرتضی ناجی^۱

^۱ گروه تربیت بدنی و علوم ورزشی، دانشکده علوم اجتماعی و فرهنگی، دانشگاه جامع امام حسین (ع)، تهران، ایران.

چکیده

اهداف: ماهیت فعالیت نظامی ایجاب می‌کند تا فرد نظامی همواره از آمادگی قلبی-تنفسی و توان کافی برخوردار باشد. مطالعه حاضر با هدف مقایسه اثر تمرینات مقاومتی دایره‌ای و تمرینات عملکردی شدید بر عملکرد جسمانی کارکنان نظامی انجام شد.

مواد و روش‌ها: در این مطالعه نیمه‌تجربی، با طرح پیش‌آزمون-پس‌آزمون، از بین تمامی کارکنان نظامی مرد یک مرکز نظامی عملیاتی در شهر اهواز، ۴۵ نفر به صورت در دسترس انتخاب و به صورت تصادفی در سه گروه تمرینات عملکردی شدید، تمرینات مقاومتی دایره‌ای و گروه کنترل قرار گرفتند. در مرحله پیش‌آزمون اندازه‌گیری‌های قد، وزن، اکسیژن مصرفی بیشینه و توان بی‌هوایی انحصار شد. در ادامه، مرحله تمرینی شامل هشت هفته و هر هفته سه جلسه تمرین بود. در نهایت، ۲۴ ساعت بعد از اتمام مرحله تمرینی، در مرحله پس‌آزمون، اندازه‌گیری‌های مورد نظر مجدد انجام شد. داده‌ها به روش تی وابسته، کوواریانس و آزمون تعییبی بنفرونوی با استفاده از نرم‌افزار SPSS 19 تحلیل شدند.

یافته‌ها: نتایج نشان داد، بین گروه‌ها در متغیرهای سن، قد و وزن تفاوت معناداری وجود نداشت و گروه‌ها در این سه متغیر همگن بودند. تمرینات عملکردی شدید و تمرینات مقاومتی دایره‌ای در افزایش توان هوایی ($p < 0.05$) و افزایش توان بی‌هوایی ($p < 0.05$) تأثیر معناداری داشت. نتایج حاکی از بهبود معنادار شاخص‌های توان هوایی و توان بی‌هوایی در اثر تمرینات HIFT در مقایسه با تمرینات مقاومتی دایره‌ای بود ($p < 0.05$).

نتیجه‌گیری: نتایج مطالعه حاضر نشان داد هر دو نوع تمرین HIFT و مقاومتی دایره‌ای موجب افزایش توان هوایی، بهبود ظرفیت بی‌هوایی و نیز بهبود استقامت کارکنان نظامی می‌شود. به طور کلی نتایج مطالعه حاضر بر اهمیت تمرینات HIFT در مقایسه با تمرینات مقاومتی دایره‌ای بر عملکرد جسمانی کارکنان نظامی تأکید دارد.

کلیدواژه‌ها: تمرینات مقاومتی، آمادگی جسمانی-عملکردی، نیروی نظامیان

تاریخچه مقاله:

دریافت: ۱۴۰۲/۰۱/۱۶
پذیرش: ۱۴۰۲/۰۸/۰۸
انتشار: ۱۴۰۲/۰۸/۱۹

نویسنده مسئول:

آدرس پستی: گروه تربیت بدنی و علوم ورزشی، دانشکده علوم اجتماعی و فرهنگی، دانشگاه جامع امام حسین (ع)، تهران، ایران، کد پستی: ۱۶۹۸۷۱۵۸۶۱
پست الکترونیکی: izadi.mreza@gmail.com

نحوه استناد به مقاله:

Nasiri D, Izadi MR, Yousefpour Dehaqani AR, Naji M. *Comparison of the Effect of Circular Resistance Training and Intense Functional Training on the Physical Performance of Military Forces*. J Police Med. 2023;12(1):e20.

مقدمه

سازمان‌های نظامی و ارتش‌های جهان همواره نیروی انسان خود را ارزشمندترین گنجینه و پرتوان‌ترین ابزار پیروزی قلمداد می‌کنند [۱]. شکست یا پیروزی در یک صحنه نبرد علاوه بر تسلیحات و تکنولوژی، به سلامت جسم و روان و میزان آمادگی جسمانی نظایران نقش مهمی در نتیجه یک نبرد داشته است [۱, ۲]. انواع تمرینات قدرتی، استقامتی و ترکیبی، سبب بهبود آمادگی عملی افراد نظامی است. آمادگی کامل منجر می‌شود تا فرد تحت هر شرایط آب و هوایی و محیطی بهترین عملکرد را داشته باشد. از ترکیب تمریناتی که باعث توسعه مهارت‌های بدنی می‌شوند و بدناسازی‌هایی که قدرت و استقامت را افزایش می‌دهند، آمادگی رزمی به وجود می‌آید [۲, ۳].

ماهیت فعالیت نظامی ایجاب می‌کند تا نیروی نظامی در زمان صلح یا در زمان جنگ از آمادگی بدنی مناسبی برخوردار باشد. مأموریت‌های نظامی و به خصوص صحنه نبرد، سطح بالایی از آمادگی جسمانی را طلب می‌کند. همچنین قرار گرفتن در شرایط محیطی و دمایی گوناگون، این سطح از حساسیت ورزیدگی نظایران را قوت می‌بخشد. بر این اساس، فعالیت بدنی و برنامه‌های تمرینی به عنوان ابزاری برای رسیدن به سلامت جسمانی و روانی، زیرینای اصلی تمام آموزش‌های نظامی در نقاط مختلف جهان است و نقش بسیار مهمی در بروز استعدادهای نهفته افراد دارد [۱-۳]. علی‌رغم اثربخشی برنامه‌های تمرین مقاومتی سنتی در پیشرفت قدرت عضلانی، تمرینات نوین مقاومتی علاوه بر بهبود قدرت عضلانی، قدرت در استقامت و قدرت در سرعت را نیز بهبود می‌بخشد [۴]. دانشکده پزشکی ورزشی آمریکا، دو تا چهار مجموعه ۸ تا ۱۲ تکرار در هر گروه بزرگ عضلانی را برای مبتدیان (با تقریباً ۶۰ درصد حداکثر یک تکرار بیشینه در دو تا سه روز غیرمتناوب در هفته را) توصیه می‌کند. همچنین دو تا سه دقیقه استراحت بین مجموعه‌ها برای ریکاوری مناسب توصیه می‌شود. این توصیه اغلب منجر به افزایش قدرت عضلانی، استقامت و هایپرتووفی در بین افراد غیرآموزش‌دیده می‌شود [۵]. اما نوع دیگری از تمرین که آن را تمرینات دایره‌ای می‌نامند، به دلیل ماهیت توانی و قدرت در استقامت، علاوه بر سیستم عضلانی، موجب تقویت سیستم قلبی-عروقی می‌گردد. علاوه بر این، به دلیل مسئله کارایی زمان و اثرگذاری تمرین در بهبود ظرفیت هوایی و بی‌هوایی، به جای تمرینات قدرتی سنتی در یک جلسه تمرین کوتاه‌تر، از تمرین دایره‌ای استفاده می‌شود [۱]. دقیقاً مانند تمرینات قدرتی سنتی، تمرینات دایره‌ای سنتی به طور معمول از تکرارها، سنتها و برنامه‌های استراحت مشخص با استفاده از مقاومت در برابر وزنه یا وزن بدن پیروی می‌کند [۵]. برنامه‌های تمرینی دایره‌ای محور به دلیل کاربردی بودن و کارایی با محدودیت زمانی، محبوبیت یافته‌اند. گزارش

شده است که ترکیبی از تمرینات قلبی-عروقی و مقاومتی در یک طراحی استراحت محدود باشد بالاتر، منجر به مزایای بی‌شماری در سلامتی و تناسب اندام در مدت زمان کمتری نسبت به برنامه‌های سنتی می‌شود [۶]. علاوه بر این، *Chtara* و همکاران (۲۰۰۸) گزارش کرده‌اند که یک برنامه تمرینی مقاومتی دایره‌ای ۱۲ هفته‌ای با فرکانس پایین، منجر به بهبود قدرت عضلانی، استقامت و قدرت می‌شود [۷].

علاوه بر تمرینات مقاومتی، امروزه از تمرینات نوینی به نام تمرین فانکشنال شدید (HIFT) که تحت عنوان *Cross Fit* نیز شناخته می‌شود، در بین افراد گوناگون استفاده می‌شود. HIFT از انواع ماهیت‌های فعالیت ورزشی از قبیل فعالیت‌های هوایی تک‌ساختاری (مثل دویدن و قایقرانی)، حرکات تحمل وزن بدن (اسکات و شنا سوپری)، و مشتقات وزنه‌برداری (پرس سرشانه، لیفت مرده) بهره می‌برد [۸]. برخلاف تمرینات تناوبی شدید که به فعالیت‌های تکی مثل دویدن متکی است، HIFT بر حرکات عملکردی و چندمقصده تأکید دارد که می‌تواند برای هر سطح آمادگی تعديل گردد و فراخوانی عضلانی بزرگتر همراه با فعالیت‌های ورزشی هوایی و قدرتی-عضلانی را ایجاد کند [۸, ۹]. به طور کلی HIFT یک مدل تمرینی نسبتاً نوین است که اخیراً در صنعت آمادگی جسمانی دیده می‌شود. توجه به HIFT ممکن است تا حدود زیادی به دلیل همدلی قوی شرکت‌کنندگان باشد که باعث افزایش وابستگی به برنامه تمرینی در مقایسه با شیوه‌های سنتی تمرین مقاومتی می‌شود [۱۰]. مطالعات مختلفی HIFT اذعان کرده‌اند، نرخ مصرف بالای کالری تمرینات مشابه با تمرینات دایره‌ای شدید است [۸, ۹]. از جبهه فیزیولوژیکی، مطالعاتی مانند مطالعه *Banaszek* (۲۰۱۸) و *Brisebois* (۲۰۱۸) پیشنهاد می‌کنند که HIFT ممکن است باعث بهبود در ترکیب بدنی [۱۱, ۱۲] شود و طبق نظر *Marin* (۲۰۱۸) موجب افزایش ظرفیت هوایی [۱۲, ۱۳] و همکاران (۲۰۱۸) معتقد است، این نوع تمرینات قدرتی به نوبه خود سبب ارتقای قدرت عضلانی، پشتیبانی بهتر عضلات از مفاصل و نیز موجب بهبود ترکیب بدنی فرد می‌شود. این تمرینات با ساز و کارهای مرتبط با هایپرتروفی، موجب توسعه قدرت و توسعه ساختار عضلات ریز و درشت می‌شوند [۱۵]. پژوهشگران معتقد‌اند، تمرینات قدرتی یا مقاومتی، به واسطه بهبود پایداری اسکلتی و حس عمقی، سبب بهبود تعادل عمومی فرد نیز می‌شوند [۱۶]. مطالعات نشان داده‌اند این تمرینات می‌توانند اثرات منفی ناشی از تمرینات استقامتی همچون استرس اکسیداتیو، افزایش التهاب، افزایش سطوح کورتیزول و اختلالات عضلانی را کاهش دهد [۱۷, ۱۸]. اگر در افراد ورزشکار و به ویژه نظامیان، تمرینات مقاومتی با تمرینات تقویت توان قلبی-تنفسی در قالب تمرینات مقاومتی دایره‌ای

عصبی، نداشتن افسرگی بر اساس پرسش‌نامه افسرگی Beck. عدم استعمال دخانیات و عدم استفاده از داروهای خاص بود. افرادی که در مدت مطالعه دچار آسیب شدند یا نتوانستند برنامه تمرینی را به طور کامل انجام دهنند یا بیش از دو جلسه غیبت متواتی داشتند، از روند مطالعه حذف شدند. همچنین برای افراد شرح داده شد که در هر زمان از مراحل انجام تحقیق در صورت عدم تمایل به ادامه همکاری می‌توانند انصراف دهنند.

از ترازوی دیجیتال سکا جهت اندازه‌گیری وزن آزمودنی‌ها و از متر نواری جهت اندازه‌گیری قد آزمودنی‌ها استفاده شد. علاوه بر این، برای اندازه‌گیری حداکثر اکسیژن مصرفی از آزمون راه‌رفتن راکپورت که به صورت میدانی انجام می‌شود، استفاده شد. تست راه رفتن راکپورت بدین صورت اجرا شد که از آزمودنی‌ها خواسته شد یک مایل (۱/۶ کیلومتر) را تا آنجا که می‌توانند به تندی راه بروند. آزمودنی‌ها قبل از شروع آزمون، ۵ الی ۱۰ دقیقه حرکات کششی سبک انجام دادند. گرفتن نبض آزمودنی‌ها به مدت یک دقیقه و به محفوظ اتمام آزمون، انجام شد (شمارش نبض از راه لمس سرخرگ کاروتید در ۱۵ ثانیه و سپس ضرب تعداد آن در ۴ برای محاسبه تعداد ضربان در دقیقه). همچنین، برای انجام توان بی‌هوایی از پروتکل تمرینی RAST استفاده شد. این پروتکل شامل ۶ مرحله ۳۵ متر دویدن با حداکثر سرعت با ۱۰ ثانیه استراحت بین هر مرحله بود. برای اجرای این آزمون، ابتدا آزمودنی‌ها به مدت ۱۰ دقیقه بدن خود را گرم نمودند. مدت زمان اجرای آزمون RAST در هر مرحله، بر حسب ثانیه و سده ثانیه، به فاصله ۳۵ متر در سالان ورزشی ثبت شد. هر آزمودنی از خط مبدأ شروع به حرکت کرد و با عبور از خط پایان، زمان سنج متوقف شد. پس از گذشت ۱۰ ثانیه دور دوم دویدن شروع شد. هر یک از آزمودنی‌ها، مسافت ۳۵ متری را شش بار، با سرعت تمام طی کردند و زمان مربوط به هر مرحله ثبت شد.

در این مطالعه توان بیشینه فرد با استفاده از بیشترین مقدار عددی حاصل از اجرای آزمون RAST بر حسب وات، به دست آمد. برای این کار از رابطه نسبت مربع مسافت طی شده بر مکعب زمان سپری شده برای طی کردن مسافت ۳۵ متر استفاده شد. همچنین توان حداقل حاصل از اجرای آزمون RAST، بر حسب وات، با استفاده از رابطه وزن ضرب در نسبت مربع مسافت طی شده بر مکعب زمان سپری شده در مسافت ۳۵ متر در نظر گرفته شد. با توجه به اینکه افراد در اجرای آزمون RAST، باید شش بار مسافت ۳۵ متر را طی می‌کردند، مجموع هر یک از توان‌های به دست آمده در هر یک از مراحل، تقسیم بر عدد شش شد که نشان‌دهنده میانگین توان فرد مورد بررسی بود [۲۱]. در یک جلسه توجیهی که یک هفته قبل از شروع پروتکل‌های تمرینی برگزار شد، تمامی برنامه‌ها، مزایا و خطرات احتمالی، شیوه صحیح اجرای تمرینات

ترکیب شوند، می‌تواند علاوه بر بهبود کارآمدی هوایی و بی‌هوایی، از بروز آسیب‌ها پیشگیری کرده و آسیب‌های موجود را توان بخشی نماید [۱۸].

در چند مطالعه، تمرینات فانکشنال شدید، به عنوان یک برنامه آموزشی ارزشمند و مناسب برای نیروهای نظامی معرفی شده است [۲۰، ۱۹] و گزارش شده است که چگونه برنامه‌هایی که جبهه‌های تمرین مقاومتی را با تمرینات هوایی و وزن بدن ترکیب می‌کنند، نسبت به تمرین نظامی سنتی، پتانسیل بسیار خوبی برای بهبود ظرفیت بی‌هوایی و هوایی در زمان بیشتری دارند. *Hinrish* و همکاران، تأثیرات یک برنامه تمرینی فیزیکی نظامی سنتی و یک برنامه HIFT به سبک دایره‌ای را در بین نیروهای فعال ارتش انجام داده‌اند. پس از هشت هفته آموزش، گروه برنامه HIFT به سبک دایره‌ای به طور قابل توجهی قدرت، ظرفیت هوایی و انعطاف‌پذیری خود را در مقایسه با گروه آموزش فیزیکی نظامی سنتی افزایش داده‌اند [۹]. اگرچه در مورد نیروهای نظامی، مطالعات کمی در مورد برسی اثرات HIFT در برخی از جبهه‌های آمادگی مرتبط با سلامتی یا مقایسه اثرات HIFT با تمرینات مقاومتی سنتی منتشر شده است، اما با جستجوی محقق در پایگاه‌های اطلاعاتی، مطالعه‌ای یافته نشد که به مقایسه بین تمرینات HIFT و تمرینات مقاومتی دایره‌ای در نیروهای نظامی پرداخته باشد. بنابراین با توجه به اینکه HIFT و تمرینات مقاومتی دایره‌ای هر دو به عنوان روش‌های کارآمد برای بهبود سلامتی و تناسب اندام مورد استفاده قرار می‌گیرند و برخی از اصول اصلی از جمله فعالیت‌های مکرر با استراحت‌های مختصر کوتاه را به اشتراک می‌گذارند، در این مطالعه، اثر این تمرینات بر عملکرد جسمانی کارکنان نظامی بررسی شد تا از این طریق بتوان به بهترین برنامه تمرینی در راستای بهبود آمادگی جسمانی ایشان دست یافت.

مواد و روش‌ها

مطالعه حاضر از نوع تحقیقات نیمه‌تجربی با طرح پیش‌آزمون-پس‌آزمون با دو گروه آزمایش و یک گروه کنترل است. جامعه آماری این پژوهش، تمامی کارکنان نظامی مرد یک مرکز نظامی عملیاتی در استان خوزستان به تعداد ۴۰۰ نفر بود. تعداد نمونه تحقیق حاضر بر اساس نرم‌افزار Power 3.1.9.2 G محاسبه شد. حداقل اندازه نمونه، ۳۶ نفر (دوازده نفر در هر گروه) با استفاده از آلفای ۰/۳۰ به دست آمد. نمونه‌ها به صورت در دسترس انتخاب شدند و به صورت تصادفی در ۳ گروه تمرینات عملکردی شدید، تمرینات مقاومتی دایره‌ای و کنترل قرار گرفتند. معیارهای ورود به این پژوهش، مردان جوان سالم، سن ۳۰-۳۵ سال، شاخص توده بدنی بین ۲۰ تا ۲۴/۹ کیلوگرم بر مترمربع، نداشتن هرگونه بیماری قلبی-عروقی، دیابت، محدودیت ارتوپدی/

نوع ورزش	تمرينها	هفتاهها
با وزن بدن	حرکت کول با سومو اسکات (Upright row with sumo squat)	
بدون وزن بدن	فلای دمبل با کشیدن لگن به بالا (Dumbbell fly with pelvic elevation)	
باندهای الاستیک	چرخش تن به باند الاستیک (Elastic trunk rotation)	
بدون وزن بدن	نشر نظامی با لانج از بغل (Front raise with side lunge)	۶ و ۲
با وزن بدن	پارویی به حالت شبیدار (Suspended row)	
با وزن بدن	خم شدن زانو همراه با خم شدن آرنج (Knee flexion with elbow flexion)	
با وزن بدن	خم شدن تن به طرفین (Trunk lateral flexion)	
باندهای الاستیک	ایستادن روی یک پا با چشم بسته (Single leg balance with eyes closed)	
با وزن بدن	اسکات تراست (Squat thruster)	
باندهای الاستیک	فلکشن لگن با آرنج خم (Hip flexion with elbow flexion)	
با وزن بدن	کرانج با توب (Ball crunch)	
باندهای الاستیک	نشر جانب با لانج (Side lateral raise with lunge)	۷ و ۳
بدون وزن بدن	پارویی زیریغل (Horizontal row)	
با وزن بدن	ددلیفت با وزنه (Bench press)	
با وزن بدن	پرس نیمکت (Single leg balance with eyes closed)	
با وزن بدن	پرس نیمکت ایستاده (Standing bench) (press)	
با وزن بدن	سومو اسکات (Sumo squat)	
با وزن بدن	پارویی زیریغل (Horizontal row)	
با وزن بدن	کرانج (Crunch)	۸ و ۴
با وزن بدن	Push forward	
با وزن بدن	اکستنشن لگن (Hips extension)	
با وزن بدن	آبداسشن و آداسشن شانه (Shoulder abduction)	
با وزن بدن	چرخش تن (Trunk rotation)	

در این پروتکل تمرينی، در همه هفتاهای و در تمامی جلسات، زمان اجرای هر حرکت ۴۰ ثانیه و هر حرکت ۳ تکرار و استراحتها به صورت ۲۰ ثانیه بین هر تکرار و ۶۰ ثانیه بین هر ایستگاه بود. پروتکل تمرين مقاومتی دایرهای به مدت هشت هفته و هر هفته سه جلسه بر اساس مطالعه *Sobrero* و همکاران (۲۰۱۷) طراحی و اجرا شد [۵]. مراحل تمرين مقاومتی دایرهای عبارت بود از: ده دقیقه گرم کردن به صورت دویden با شدت کم، حدود ۶۰ درصد ضربان قلب بیشینه و حرکات کششی در ابتدای جلسه، پروتکل تمرينی اختصاصی و در نهایت ده دقیقه دویden نرم و حرکات کششی در پایان هر جلسه تمرين. پروتکل تمرين مقاومتی به صورت دایرهای، شامل هشت ایستگاه طراحی شد و چند روز قبل از آزمون، جلساتی توجیهی برای آشنایی

مقاومتی دایرهای و عملکردی شدید برای شرکت کنندگان توضیح داده شد و همچنین با توجه به مداخله تمرينی در این پژوهش و جلوگیری از اثرات تداخلی با داروها از آزمودنیها درخواست شد که در طول دوره تمرين، از مصرف هر نوع دارو به خصوص داروهای کاهش دهنده فشارخون، اجتناب نمایند و در صورت مصرف گزارش کنند. البته قابل ذکر است که در جریان اجرای پژوهش، تمامی آزمودنیها تحت نظر پزشک متخصص کنترل شدند تا از بروز هر نوع خطرات احتمالی جلوگیری شود.

پس از آشنایی آزمودنیها با مراحل اجرای کار، آنها به صورت تصادفی به سه گروه (تمرينات مقاومتی دایرهای، تمرينات عملکردی شدید و کنترل) تقسیم شدند. در ابتدا در مرحله پیش آزمون اندازه گیری های قدر، وزن، اکسیژن مصرفی بیشینه، توان بی هوازی در ساعت ۸ تا ۱۰ صبح در سالن ورزشی یکی از مراکز عملیاتی استان خوزستان سنجیده شد. پس از مرحله پیش آزمون، مرحله تمرينی آغاز شد. مرحله تمرينی در هشت هفته و هر هفته سه جلسه (ساعت ۸ تا ۱۰ صبح) در سالن ورزشی یکی از مراکز عملیاتی استان خوزستان انجام شد. در این مدت گروه کنترل به فعالیت های روزمره خود پرداختند و گروه های تمرينی پروتکل های تمرينی طراحی شده را اجرا کردند. در طول اجرای برنامه تمرينی، اصل اضافه بار تمرين نیز با افزایش هر می شد و حجم تمرين کنترل شد. *Banaszek* پروتکل تمرينی مطالعه حاضر برگرفته از تحقیق و همکاران (۲۰۱۹) بود [۱۱] (جدول ۱ و ۲).

جدول ۱) مشخصه های اجزای تمرينات عملکردی شدید

مشخصه	متغیر
فعالیت های انجام شده	تمرينات مقاومتی یکپارچه، شامل تمرينات همزمان اندام فوقانی و تحتانی، حرکات چندصفحه ای، تمرينات قبات مرکزی، هماهنگی حرکتی و تعادل
شدت	هفتاه ۱-۸: شاخص درک فشار (۶-۷)
حجم/ دوره/ روش	طرح دایره ای با ۸ ایستگاه (تمرين)، ۴۰ ثانیه تمرين، ۲۰ ثانیه استراحت، ۳ تکرار، در مجموع ۲۵ دقیقه

جدول ۲) پروتکل های تمرينات عملکردی شدید

هفتاهها	تمرينها	نوع ورزش
	ایستادن و نشستن با آرنج خم (Sit-to-stand with elbow flexion)	با وزن بدن
	(Push-ups)	با وزن بدن
	کرانج با چرخش (Crunches with rotation)	با وزن بدن
	(Dumbbell swing)	بدون وزن بدن
۵ و ۱	کشیدن به پایین با اسکات (Front pulldown with squat)	باندهای الاستیک
	حرکت فیله کمر با وزنه روی سرشانه از پیش ("Good morning")	بدون وزن بدن
	باز شدن لگن همراه با بالا بردن پ (Side-lying hip abduction)	با وزن بدن
	Airplane	با وزن بدن

اصول علمی فیزیولوژی ورزشی، با بکارگیری عضلات بزرگ بدن آغاز شد و با تمرین عضلات کوچکتر بدن به صورت یک حرکت بالا تنه و یک حرکت پایین تنه پایان یافت (جدول ۳). ۲۴ ساعت بعد از اتمام مرحله تمرینی، در مرحله پس آزمون، اندازه‌گیری‌های توان هوایی، توان بی‌هوایی رأس ساعت ۸ تا ۱۰ صبح در سالن ورزشی مرکز نظامی مورد مطالعه انجام شد.

با ایستگاه‌های تمرینی، اصول صحیح تمرین با وزنه، حجم و شدت تمرین، تعداد تکرارها و زمان استراحت بین دستگاه‌ها و دوره‌ها برگزار شد و یک تکرار بیشینه حرکت‌های مورد نظر برای چهار هفته اول و برای چهار هفته دوم در انتهای هفته چهارم از روش غیرمستقیم و فرمول Brzycki اندازه‌گیری شد. برنامه تمرینی مقاومتی بر اساس اصول علمی طراحی تمرین مقاومتی دایره‌ای و

جدول (۳) پروتکل تمرینات مقاومتی دایره‌ای

هرفت	تمرینات اصلی	شدت	ست	تکرار	استراحت	سرد کردن
اول	پرس سینه، پرس پا، پایین کشیدن میله (زیر بغل)، دوکلو با دستگاه، جلو بازو، پشت ران با دستگاه، نشر جانبی با دمبل (صلیب)، سرشانه با هالت	۶۵ درصد یک تکرار	۴ ست	۸ تکرار	بدون استراحت بین هر تکرار، ۱ دقیقه استراحت بین هر ست، ۱۵ ثانیه استراحت بین هر ایستگاه	
دوم	پرس سینه، پرس پا، پایین کشیدن میله (زیر بغل)، دوکلو با دستگاه، جلو بازو، پشت ران با دستگاه، نشر جانبی با دمبل (صلیب)، سرشانه با هالت	۶۵ درصد یک تکرار	۴ ست	۸ تکرار	بدون استراحت بین هر تکرار، ۱ دقیقه استراحت بین هر ست، ۱۵ ثانیه استراحت بین هر ایستگاه	
سوم	پرس سینه، پرس پا، پایین کشیدن میله (زیر بغل)، دوکلو با دستگاه، جلو بازو، پشت ران با دستگاه، نشر جانبی با دمبل (صلیب)، سرشانه با هالت	۷۰ درصد یک تکرار بیشینه	۴ ست	۹ تکرار	بدون استراحت بین هر تکرار، ۱/۳۰ دقیقه استراحت بین هر ست، ۱۵ ثانیه استراحت بین هر ایستگاه	
چهارم	پرس سینه، پرس پا، پایین کشیدن میله (زیر بغل)، دوکلو با دستگاه، جلو بازو، پشت ران با دستگاه، نشر جانبی با دمبل (صلیب)، سرشانه با هالت	۷۰ درصد یک تکرار بیشینه	۴ ست	۹ تکرار	بدون استراحت بین هر تکرار، ۱/۳۰ دقیقه استراحت بین هر ست، ۱۵ ثانیه استراحت بین هر ایستگاه	
پنجم	پرس سینه، پرس پا، پایین کشیدن میله (زیر بغل)، دوکلو با دستگاه، جلو بازو، پشت ران با دستگاه، نشر جانبی با دمبل (صلیب)، سرشانه با هالت	۷۵ درصد یک تکرار بیشینه	۳ ست	۱۰ تکرار	۵ ثانیه استراحت بین هر تکرار، ۲ دقیقه استراحت بین هر ست، ۱۵ ثانیه استراحت بین هر ایستگاه	
ششم	پرس سینه، پرس پا، پایین کشیدن میله (زیر بغل)، دوکلو با دستگاه، جلو بازو، پشت ران با دستگاه، نشر جانبی با دمبل (صلیب)، سرشانه با هالت	۷۵ درصد یک تکرار بیشینه	۳ ست	۱۰ تکرار	۵ ثانیه استراحت بین هر تکرار، ۲ دقیقه استراحت بین هر ست، ۱۵ ثانیه استراحت بین هر ایستگاه	
هفتم	پرس سینه، پرس پا، پایین کشیدن میله (زیر بغل)، دوکلو با دستگاه، جلو بازو، پشت ران با دستگاه، نشر جانبی با دمبل (صلیب)، سرشانه با هالت	۸۰ درصد یک تکرار بیشینه	۲ ست	۱۱ تکرار	۱۰ ثانیه استراحت بین هر تکرار، ۲/۳۰ دقیقه استراحت بین هر ست، ۱۵ ثانیه استراحت بین هر ایستگاه	
هشتم	پرس سینه، پرس پا، پایین کشیدن میله (زیر بغل)، دوکلو با دستگاه، جلو بازو، پشت ران با دستگاه، نشر جانبی با دمبل (صلیب)، سرشانه با هالت	۸۰ درصد یک تکرار بیشینه	۲ ست	۱۱ تکرار	۱۰ ثانیه استراحت بین هر تکرار، ۲/۳۰ دقیقه استراحت بین هر ست، ۱۵ ثانیه استراحت بین هر ایستگاه	

شاپیرو ویلک برای بررسی نرمال بودن داده‌ها استفاده شد. در بخش آمار استنباطی، از آزمون تحلیل کوواریانس و آزمون تعقیبی بنفوذی جهت مقایسه سه متغیرهای سن (p=۰/۴۶)، (F=۰/۷۸)، (F=۰/۶۳)، (F=۰/۲۹۹)، (F=۰/۴۶)، (F=۰/۸۸) و وزن (p=۰/۰۶) تفاوت معناداری وجود نداشت و گروه‌ها در این سه متغیر همگن بودند (جدول ۴). در ارتباط با شاخص توان هوایی نتایج نشان داد که بین گروه‌ها در متغیرهای سن (p=۰/۰۰۱)، (F=۰/۷۸)، (F=۰/۶۳)، (F=۰/۲۹۹)، (F=۰/۴۶)، (F=۰/۸۸) و وزن (p=۰/۰۶) تفاوت معناداری وجود نداشت و گروه‌ها در این سه متغیر همگن بودند (جدول ۴). در ارتباط با شاخص توان هوایی نتایج نشان داد، تمرین عملکردی شدید بر توان هوایی کارکنان نظامی تأثیر معناداری داشت (p=۰/۰۱) و در اثر این نوع تمرین، میانگین توان هوایی کارکنان نظامی از

ملاحظات اخلاقی: تمامی مراحل مطالعه حاضر بر اساس دستورالعمل‌های اخلاق در پژوهش‌های Zivits پژشک با شناسه اخلاق REC.1402.062 انجام شد. به آزمودنی‌ها اطمینان خاطر داده شد که اطلاعات شخصی آنها نزد پژوهشگران به صورت محترمانه حفظ می‌شود و در نهایت به صورت کلی گزارش می‌گردد و به آنان نیز این اختیار داده شد که در هر مرحله از تمرین بتوانند در صورت عدم تمایل به ادامه همکاری انصراف دهند. به تمام آزمودنی‌ها فرم رضایت‌نامه داده شد تا به صورت آگاهانه و داوطلبانه آمادگی خود را برای شرکت در پروتکل‌های تمرینی اعلام کنند.

تجزیه و تحلیل آماری: به منظور تجزیه و تحلیل داده‌ها، از روش‌های آمار توصیفی برای محاسبه شاخص‌های مرکزی و پراکندگی استفاده شد. از آزمون

یافته‌ها

نتایج نشان داد که بین گروه‌ها در متغیرهای سن (p=۰/۰۰۱)، (F=۰/۷۸)، (F=۰/۶۳)، (F=۰/۲۹۹)، (F=۰/۴۶)، (F=۰/۸۸) و وزن (p=۰/۰۶) تفاوت معناداری وجود نداشت و گروه‌ها در این سه متغیر همگن بودند (جدول ۴). در ارتباط با شاخص توان هوایی نتایج نشان داد، تمرین عملکردی شدید بر توان هوایی کارکنان نظامی تأثیر معناداری داشت (p=۰/۰۱) و در اثر این نوع تمرین، میانگین توان هوایی کارکنان نظامی از

(p=۰/۰۰۱). در اثر تمرین عملکردی شدید، میانگین توان بی‌هوایی کارکنان نظامی از پیش‌آزمون (۴۷/۸۶±۱۶/۳۱) تا پس‌آزمون (۵۲۵/۱۳±۱۴/۱۸) بر حسب وات افزایش معناداری داشت. همچنین تمرین مقاومتی دایرها بر میانگین توان بی‌هوایی کارکنان نظامی تأثیر معناداری داشت (p=۰/۰۰۱). به صورت کلی گروه‌های تمرینات عملکردی شدید و تمرینات مقاومتی دایرها در مقایسه با گروه کنترل، میانگین توان بی‌هوایی بالاتری داشتند (p<۰/۰۵). دیگر نتایج حاکی از این بود که گروه تمرینات عملکردی شدید در مقایسه با گروه تمرینات مقاومتی دایرها، میانگین توان بی‌هوایی بالاتری داشتند (p<۰/۰۵) (جدول ۵).

در ارتباط با شاخص حداقل توان بی‌هوایی، نتایج نشان داد که تمرین عملکردی شدید بر حداقل توان بی‌هوایی کارکنان نظامی تأثیر معناداری داشت (p=۰/۰۰۱). در اثر تمرین عملکردی شدید، میانگین حداقل توان بی‌هوایی از پیش‌آزمون (۳۲۶/۷۲±۱۴/۳۴) تا پس‌آزمون (۳۸۱/۰۰±۱۵/۲۲) بر حسب وات، افزایش معناداری داشت. همچنین تمرین مقاومتی دایرها بر حداقل توان بی‌هوایی کارکنان نظامی تأثیر معناداری داشت (p=۰/۰۰۱). به صورت کلی گروه‌های تمرینات عملکردی شدید و تمرینات مقاومتی، در مقایسه با گروه کنترل، حداقل توان بی‌هوایی بالاتری داشتند (p<۰/۰۵). دیگر نتایج حاکی از این بود که گروه تمرینات عملکردی شدید در مقایسه با گروه تمرینات مقاومتی دایرها از حداقل توان بی‌هوایی بالاتری داشتند (p<۰/۰۵).

پیش‌آزمون (۴۰/۶۰±۳/۴۸) تا پس‌آزمون (۵۰/۰۶±۳/۰۳) به طور معناداری افزایش داشت (جدول ۵). از طرف دیگر، تمرین مقاومتی دایرها نیز بر توان هوایی کارکنان نظامی تأثیر معناداری داشت (p=۰/۰۰۳). به صورت کلی گروه‌های تمرینات عملکردی شدید و تمرینات مقاومتی دایرها بر توان هوایی بالاتری داشتند در مقایسه با گروه کنترل، توان هوایی تمرینات مقاومتی عملکردی شدید در مقایسه با گروه تمرینات مقاومتی دایرها، توان هوایی بالاتری داشتند (p<۰/۰۵). دیگر نتایج حاکی از این بود که گروه تمرینات مقاومتی دایرها از توان بی‌هوایی، در ارتباط با شاخص اوج توان بی‌هوایی، نتایج نشان داد که تمرین عملکردی شدید بر اوج توان بی‌هوایی کارکنان نظامی تأثیر معناداری داشت (p=۰/۰۰۱). در اثر تمرین عملکردی شدید، میانگین اوج توان بی‌هوایی کارکنان نظامی از پیش‌آزمون (۵۹۸/۷۳±۱۳/۲۳) تا پس‌آزمون (۵۵۶/۷۳±۲۰/۴۴) بر حسب وات افزایش معناداری داشت. همچنین تمرین مقاومتی دایرها بر اوج توان بی‌هوایی کارکنان نظامی تأثیر معناداری داشت (p=۰/۰۰۷). به صورت کلی گروه‌های تمرینات عملکردی شدید و تمرینات مقاومتی دایرها در مقایسه با گروه کنترل، اوج توان بی‌هوایی بالاتری داشتند (p<۰/۰۵). دیگر نتایج حاکی از این بود که گروه تمرینات عملکردی شدید در مقایسه با گروه تمرینات مقاومتی دایرها از اوج توان بی‌هوایی بالاتری داشتند (p<۰/۰۵) (جدول ۵).

در ارتباط با شاخص میانگین توان بی‌هوایی، نتایج نشان داد که تمرین عملکردی شدید بر میانگین توان بی‌هوایی کارکنان نظامی تأثیر معناداری داشت

جدول ۴) میانگین سن، قد و وزن آزمودنی‌ها

گروه	تعداد	سن (سال)	قد (سانتی‌متر)	وزن (کیلوگرم)
تمرینات عملکردی شدید	۱۵	۳۷/۸۰±۱/۸۹	۱۸۲/۳۳±۳/۹۴	۸۱/۰۶±۳/۴۷
تمرین مقاومتی دایرها	۱۵	۳۳/۴۶±۱/۴۰	۱۸۲/۱۳±۳/۷۳	۸۲/۶۰±۴/۸۸
کنترل	۱۵	۳۳/۳۳±۱/۲۳	۱۸۱/۱۳±۳/۲۹	۸۴/۵۳±۳/۵۲

جدول ۵) تغییرات بین گروهی و درون گروهی متغیرهای تحقیق

متغیر	گروه	پیش‌آزمون	پس‌آزمون	تفاوت درون گروهی	تفاوت بین گروهی	اندازه اثر	F	p	مقدار	t	مقدار	اندازه اثر	F	p	مقدار
توان بی‌هوایی	عملکردی شدید	۴۰/۶۰±۳/۴۸	۵۰/۰۶±۳/۰۳	۰/۰۰۱	-۸/۰۳	۰/۰۰۱	۳۶/۸۷	۰/۰۰۱	۸/۰۶±۳/۴۷	-۰/۰۳	۰/۰۰۱	۰/۶۴	۰/۰۰۱	۳۶/۸۷	۰/۰۰۱
	مقاومتی دایرها	۴۰/۳۳±۳/۲۸	۴۱/۰۶±۳/۰۱	۰/۰۰۳	-۳/۵۷	۰/۰۰۳	۳۶/۸۷	۰/۰۰۱	۸/۰۶±۳/۴۷	-۰/۰۳	۰/۰۰۱	۰/۸۲	۰/۰۰۱	۳۶/۸۷	۰/۰۰۱
	کنترل	۳۷/۸۰±۱/۷۴	۴۰/۰۶±۳/۳۹	۰/۰۲۱	-۰/۲۳	۰/۰۲۱	۳۶/۸۷	۰/۰۰۱	۸/۰۶±۳/۴۷	-۰/۰۳	۰/۰۰۱	۰/۸۲	۰/۰۰۱	۳۶/۸۷	۰/۰۰۱
اوچ توان بی‌هوایی	عملکردی شدید	۵۹۸/۷۳±۱۳/۲۳	۵۵۶/۷۳±۲۰/۴۴	۰/۰۰۱	-۱۲/۹۳	۰/۰۰۱	۳۲/۷۲	۰/۰۰۱	۸/۰۶±۴/۸۸	-۱/۰۹	۰/۰۰۱	۰/۶۱	۰/۰۰۱	۳۲/۷۲	۰/۰۰۱
	مقاومتی دایرها	۶۰۰/۴۰±۱۷/۰۴	۶۲۴/۸۶±۱۹/۷۱	۰/۰۰۷	-۳/۱۴	۰/۰۰۷	۳۲/۷۲	۰/۰۰۱	۸/۰۶±۴/۸۸	-۰/۰۷	۰/۰۰۱	۰/۹۳۹	۰/۰۰۱	۳۲/۷۲	۰/۰۰۱
	کنترل	۶۰۲/۲۳۳±۱۵/۶۸	۶۰۱/۸۶±۱۴/۱۱	۰/۰۳۹	۰/۰۷	۰/۰۳۹	۳۲/۷۲	۰/۰۰۱	۸/۰۶±۴/۸۸	۰/۰۷	۰/۰۰۱	۰/۰۰۱	۰/۰۰۱	۳۲/۷۲	۰/۰۰۱
میانگین توان بی‌هوایی	عملکردی شدید	۴۷۰/۸۶±۱۶/۳۱	۵۲۵/۱۳±۱۴/۱۸	۰/۰۰۱	-۱۳/۰۳	۰/۰۰۱	۲۷/۱۶	۰/۰۰۱	۸/۰۶±۴/۸۸	-۰/۰۳	۰/۰۰۱	۰/۶۴	۰/۰۰۱	۲۷/۱۶	۰/۰۰۱
	مقاومتی دایرها	۴۷۷/۷۳±۱۳/۶۲	۴۹۶/۸۶±۱۵/۶۱	۰/۰۰۷	-۴/۱۴	۰/۰۰۷	۲۷/۱۶	۰/۰۰۱	۸/۰۶±۴/۸۸	-۰/۰۳	۰/۰۰۱	۰/۶۴	۰/۰۰۱	۲۷/۱۶	۰/۰۰۱
	کنترل	۴۷۶/۸۷±۱۲/۸۶	۴۷۹/۶۰±۱۳/۹۲	۰/۰۴۰	-۰/۴۷	۰/۰۴۰	۲۷/۱۶	۰/۰۰۱	۸/۰۶±۴/۸۸	-۰/۰۳	۰/۰۰۱	۰/۶۹	۰/۰۰۱	۲۷/۱۶	۰/۰۰۱
حداک توان بی‌هوایی	عملکردی شدید	۳۲۶/۷۳±۱۴/۳۴	۳۸۱/۰۰±۱۵/۲۲	۰/۰۰۱	-۱۵/۵۱	۰/۰۰۱	۴۶/۵۲	۰/۰۰۱	۸/۰۶±۴/۸۸	-۰/۰۳	۰/۰۰۱	۰/۶۹	۰/۰۰۱	۴۶/۵۲	۰/۰۰۱
	مقاومتی دایرها	۳۲۲/۴۰±۱۶/۵۶	۳۵۵/۴۰±۱۵/۱۱	۰/۰۰۱	-۶/۰۰	۰/۰۰۱	۴۶/۵۲	۰/۰۰۱	۸/۰۶±۴/۸۸	-۰/۰۳	۰/۰۰۱	۰/۶۹	۰/۰۰۱	۴۶/۵۲	۰/۰۰۱
	کنترل	۳۲۲/۴۰±۱۶/۹۴	۳۲۷/۶۶±۱۴/۲۹	۰/۴۰۶	-۰/۸۵	۰/۴۰۶	۴۶/۵۲	۰/۰۰۱	۸/۰۶±۴/۸۸	-۰/۰۳	۰/۰۰۱	۰/۶۹	۰/۰۰۱	۴۶/۵۲	۰/۰۰۱

وجود دارد که برنامه‌های تمرینی دایره‌ای که از تمرینات مرکب در دامنه‌ای از شدت و با مدت زمان متفاوت (HIFT) استفاده می‌کنند و از اعمال انفجاری استفاده می‌کنند، می‌توانند از نظر توسعه آمادگی جسمانی و توان هوایی حتی نتایج بهتری داشته باشند.

دیگر نتایج مطالعه حاضر نشان داد که تمرین عملکردی شدید بر افزایش اوج توان بی‌هوایی، میانگین توان بی‌هوایی و حداقل توان بی‌هوایی کارکنان نظامی تأثیر معناداری داشت. همچنین شرکت‌کنندگان گروه تمرین عملکردی شدید در مقایسه با شرکت‌کنندگان گروه تمرین مقاومتی دایره‌ای از لحاظ آماری اوج توان بی‌هوایی، میانگین توان بی‌هوایی و حداقل توان بی‌هوایی بالاتری داشتند. در مطالعه‌ای همخوان با نتایج مطالعه حاضر، بهره‌مند و همکاران در مقایسه تمرینات CrossFit و تمرینات ترکیبی (هوایی + مقاومتی) نشان داده‌اند که میانگین توان بی‌هوایی و اوج توان بی‌هوایی در اثر تمرینات CrossFit بیشتر از تمرینات ترکیبی بهبود یافته است [۲۲]. اما نتایج مطالعه حاضر با مطالعه Mcweeny و همکاران ناهمخوان است. نتایج مطالعه ایشان نشان می‌دهد که توان بی‌هوایی پایین تر در شرکت‌کنندگان تمرینات سنتی بالاتر از تمرینات عملکردی شدید است [۲۳]. از دلایل ناهمخوانی می‌توان به نوع تمرین اشاره کرد که در تحقیق Mcweeny و همکاران، تمرین مقاومتی سنتی بود در حالیکه در تحقیق حاضر تمرین مقاومتی دایره‌ای بود. علاوه بر این، در تحقیق حاضر نمونه‌ها شامل کارکنان نظامی (مردان غیرفعال) بودند در حالیکه در تحقیق Mcweeny و همکاران، نمونه‌ها شامل مرد و زن سالم بودند، این تفاوت جنسیتی (مخصوصاً نمونه‌های مرد شرکت‌کننده در تحقیق Mcweeny و همکاران، می‌تواند از دلایل بهبود توان بی‌هوایی در اثر تمرینات مقاومتی سنتی باشد. اگرچه در مطالعه حاضر شرکت‌کنندگان تمرین عملکردی شدید در مقایسه با تمرین مقاومتی دایره‌ای، توان بی‌هوایی بالاتری داشتند؛ اما در تحقیقی ناهمخوان، Sobrero و همکاران، هیچ تغییری در ظرفیت هوایی دو گروه تمرینی مشاهده نمی‌شود [۵]. یکی از دلایل این اختلاف در نتایج می‌تواند به سطح آمادگی شرکت‌کنندگان مرتبط باشد. در تحقیق حاضر، کارکنان نظامی مرکز مورد مطالعه، با سطح فعالیت بدنی پایین انتخاب شدند؛ در حالی که در تحقیق Sobrero و همکاران، شرکت‌کنندگان، زنان سالم فعال در ورزش‌های تفریحی بودند. نتایج مطالعه حاضر از استدلال Kraemmer و همکاران در خصوص عدم بهبود توان هوایی و بی‌هوایی مردان فعل، در اثر برنامه تمرینی مقاومتی شدید پس از ۱۲ هفته، پشتیبانی می‌کند [۲۴]. اخیراً، Hermassi و همکاران با نشان دادن پیشرفت‌های قابل توجه در قدرت عضلانی، توان و سرعت پرتاب در گروهی از بازیکنان هندبال در طول ۱۰ هفته از فصل رقابت، از اثربخشی برنامه‌های تمرینی دایره‌ای در ورزشکاران سطح بالا پشتیبانی بیشتری کرده‌اند [۲۵]. با این حال، نتایج برخی از مطالعات حاکی از این است که تمرینات دایره‌ای که با شدت و سرعت حرکت تجویز می‌شوند برای ایجاد توان و قدرت عضلانی و در نتیجه، عملکرد ورزشی مطلوب نیستند [۲۶]. نشان داده شده است که تمرینات با استفاده از الگوهای حرکتی انفجاری و پارهای بالاتر برای قسمت پایین تنه و بارهای متوسط برای قسمت بالا تنه (همانند تمرینات عملکردی شدید) مفیدتر هستند، زیرا هدف این است که حداکثر توان را در حین تمرینات دایره‌ای داشته باشیم [۲۷]؛ بنابراین، این احتمال

بحث

مطالعه حاضر با هدف مقایسه تأثیر تمرینات HIFT و تمرینات مقاومتی دایره‌ای بر فاکتورهای آمادگی جسمانی نیروهای نظامی انجام شد. نتایج مطالعه حاضر نشان داد که تمرین عملکردی شدید بر افزایش توان هوایی کارکنان نظامی تأثیر معناداری داشت. همچنین شرکت‌کنندگان گروه تمرین عملکردی شدید در مقایسه با شرکت‌کنندگان گروه تمرین مقاومتی دایره‌ای از لحاظ آماری، توان هوایی بالاتری داشتند. این یافته با یافته بهره‌مند و همکاران همسو است [۲۲]. بهره‌مند و همکاران در مطالعه‌ای به مقایسه تمرینات CrossFit و تمرینات ترکیبی (هوایی + مقاومتی) در زمینه مایوپتیکین، مقاومت به انسولین و عملکرد بدنی در زنان جوان سالم پرداخته‌اند. نتایج نشان داد که V02max در اثر تمرینات CrossFit بیشتر از تمرینات ترکیبی بهبودیافته است [۲۲]. همچنین در تحقیق همکاران Mcweeny، و همکاران در مطالعه‌ای به تأثیر تمرین عملکردی شدید و تمرین مقاومتی سنتی بر بهبود آمادگی هوایی، بی‌هوایی و اسکلتی عضلانی مردان و زنان سالم پرداخته‌اند. نتایج نشان می‌دهد که توان هوایی تنها در گروه تمرین عملکردی شدید بهبود یافته و گروه تمرین عملکردی شدید در مقایسه با تمرین مقاومتی سنتی آمادگی هوایی بالاتری دارند [۲۳]. اما در تحقیقی ناهمخوان، Sobrero و همکاران به مقایسه تمرینات عملکردی شدید و تمرینات دایره‌ای در زنان پرداخته‌اند. نتایج نشان می‌دهد که هیچ تغییری در ظرفیت هوایی دو گروه تمرینی مشاهده نمی‌شود [۵]. یکی از دلایل این اختلاف در نتایج می‌تواند به سطح آمادگی شرکت‌کنندگان مرتبط باشد. در تحقیق حاضر، کارکنان نظامی مرکز مورد مطالعه، با سطح فعالیت بدنی پایین انتخاب شدند؛ در حالی که در تحقیق Sobrero و همکاران، شرکت‌کنندگان، زنان سالم فعال در ورزش‌های تفریحی بودند. نتایج مطالعه حاضر از استدلال Kraemmer و همکاران در خصوص عدم بهبود توان هوایی و بی‌هوایی مردان فعل، در اثر برنامه تمرینی مقاومتی شدید پس از ۱۲ هفته، پشتیبانی می‌کند [۲۴]. اخیراً، Hermassi و همکاران با نشان دادن پیشرفت‌های قابل توجه در قدرت عضلانی، توان و سرعت پرتاب در گروهی از بازیکنان هندبال در طول ۱۰ هفته از فصل رقابت، از اثربخشی برنامه‌های تمرینی دایره‌ای در ورزشکاران سطح بالا پشتیبانی بیشتری کرده‌اند [۲۵]. با این حال، نتایج برخی از مطالعات حاکی از این است که تمرینات دایره‌ای که با شدت و سرعت حرکت تجویز می‌شوند برای ایجاد توان و قدرت عضلانی و در نتیجه، عملکرد ورزشی مطلوب نیستند [۲۶]. نشان داده شده است که تمرینات با استفاده از الگوهای حرکتی انفجاری و پارهای بالاتر برای قسمت پایین تنه و بارهای متوسط برای قسمت بالا تنه (همانند تمرینات عملکردی شدید) مفیدتر هستند، زیرا هدف این است که حداکثر توان را در حین تمرینات دایره‌ای داشته باشیم [۲۷]؛ بنابراین، این احتمال

هوایی، بهبود ظرفیت بیهوایی و نیز بهبود استقامت نیروهای نظامی و بالاخص نیروهای عملیاتی پلیس در انواع تعقیب و گیری و سایر مأموریت‌ها شود. اجرای این نوع تمرینات، علاوه بر ایجاد ورزیدگی در صحنه مأموریت، موجب به تأخیر افتادن روند ایجاد آسیب‌های قلبی و عروقی در نیروهای با سابقه خدمت بالا و نیز بازنشستگان نیروها می‌گردد. تمرینات HIFT می‌تواند بهترین روش برای ارتقای آمادگی جسمانی، هماهنگی عصبی عضلانی و چابکی برای رود نیروهای پلیس در ماده‌های مختلف مسابقات بین‌المللی نظامی باشد.

تشکر و قدردانی: مقاله حاضر بخشی از پایان‌نامه کارشناسی ارشد نویسنده اول است. نویسنده‌گان از تمامی کسانی که در انجام این تحقیق همکاری کرده‌اند کمال تشکر و قدردانی را به عمل می‌آورند.

تعارض منافع: بدین‌وسیله نویسنده‌گان مقاله تصریح می‌نمایند که هیچ‌گونه تعارض منافعی در قبال مطالعه حاضر وجود ندارد.

سهم نویسنده‌گان: محمدرضا ایزدی، احمد رضا یوسف پور و مرتضی ناجی؛ ارائه ایده و طراحی مطالعه، جمع‌آوری داده و تحلیل آماری داده؛ داریوش نصیری، تفسیر داده و جمع‌آوری داده؛ داریوش نصیری و محمدرضا ایزدی جمع‌آوری داده و تحلیل آماری داده؛ همه نویسنده‌گان در نگارش اولیه مقاله و بازنگری آن سهیم بودند و همه با تأیید نهایی مقاله حاضر، مسئولیت دقت و صحت مطالب مندرج در آن را می‌پذیرند.

یک گزینه کارآمد برای تمرین مقاومتی و دایره‌ای سنتی ارائه دهد. از محدودیت‌های تحقیق حاضر می‌توان به عدم توانایی محقق در کنترل تمامی عوامل خطرزای درونی و بیرونی آسیب و عدم کنترل دقیق تغذیه آزمودنی‌های تحقیق اشاره کرد. پیشنهاد می‌شود در تحقیقات بعدی به مقایسه اثر حاد تمرینات عملکردی شدید و تمرینات مقاومتی دایره‌ای بر عملکرد جسمانی و آزمون میدان موانع کارکنان نظامی پرداخته شود. همچنین اثر این دو نوع تمرین بر عوامل خطرزای قلبی، گلوکز و حساسیت به انسولین کارکنان نظامی نیز مقایسه گردد.

نتیجه‌گیری

بر اساس نتایج، هر دو نوع تمرین HIFT و مقاومتی دایره‌ای نسبت به گروه کنترل، موجب افزایش توان هوایی، بهبود ظرفیت بیهوایی و نیز بهبود استقامت کارکنان نظامی می‌شود. از نتایج مطالعه حاضر می‌توان دریافت تمرینات HIFT در مقایسه با تمرینات مقاومتی دایره‌ای بر عملکرد جسمانی و توان رزم کارکنان نظامی احتمالاً مؤثرتر است و به مریان نظامی پیشنهاد می‌گردد که با توجه به شرایط زمانی، از تمرینات عملکردی شدید در مقایسه با تمرینات مقاومتی دایره‌ای در جهت بهبود توان هوایی و توان بیهوایی کارکنان نظامی استفاده کنند.

نکات بالینی و کاربردی در طب انتظامی: اجرای تمرینات HIFT و مقاومتی دایره‌ای می‌تواند موجب افزایش توان

Reference

- Maleki B, Sanei S, Borhani H, Ghavami A. Effect of military training on personality traits of military students. *J Mil Med*. 2012;13(4):195-200. https://www.researchgate.net/publication/286516799_Effect_of_military_training_on_personality_traits_of_military_students
- Shakibaee A, Rahimi M, Bazgir B, Asgari A. A review on physical fitness studies in military forces. *Ebnesina*. 2015;16(4):64-79. <https://ebnesina.ajaums.ac.ir/article-1-339-en.html>
- Smith C, Doma K, Heilbronn B, Leicht A. Effect of exercise training programs on physical fitness domains in military personnel: A systematic review and meta-analysis. *Mil Med*. 2022;187(9-10):1065-73. <https://doi.org/10.1093/milmed/usac040>
- Gholami M, Salehi N. The effect of eight weeks of resistance training with Dumbbell and Theraband on the body composition and muscular strength in the middle-aged obese women: a clinical trial. *J Rafsanjan Med Sci*. 2018;17(9):829-42. <http://dorl.net/dor/20.1001.1.17353165.1397.17.9.1.6>
- Sobrero G, Arnett S, Schafer M, Stone W, Tolbert T, Salyer-Funk A, et al. A comparison of high intensity functional training and circuit training on health and performance variables in women: a pilot study. *Women Sport Phys Act J*. 2017;25(1):1-30. <http://dx.doi.org/10.1123/wspaj.2015-0035>
- Trapp EG, Chisholm DJ, Freund J, Boutcher SH. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. *Int J Obes*. 2008;32(4):684-91. <https://doi.org/10.1038/sj.ijo.0803781>
- Chtara M, Chaouachi A, Levin GT, Chaouachi M, Chamari K, Amri M, et al. Effect of concurrent endurance and circuit resistance training sequence on muscular strength and power development. *J Strength Cond Res*. 2008;22(4):1037-45. <https://doi.org/10.1519/jsc.0b013e31816a4419>
- Feito Y, Hoffstetter W, Serafini P, Mangine G. Changes in body composition, bone metabolism, strength, and skill-specific performance resulting from 16-weeks of HIFT. *PloS One*. 2018;13(6):e0198324. <https://doi.org/10.1371/journal.pone.0198324>
- Heinrich KM, Spencer V, Fehl N, Carlos Poston WS. Mission essential fitness: comparison of functional circuit training to traditional Army physical training for active duty military. *Mil Med*. 2012;177(10):1125-30. <https://doi.org/10.7205/milmed-d-12-00143>
- Claudino JG, Gabbett TJ, Bourgeois F, Souza HdS,

Miranda RC, Mezêncio B, et al. CrossFit overview: systematic review and meta-analysis. *Sport Med-Open*. 2018;4(1):1-14. <https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-018-0124-5>

11. Banaszek A, Townsend JR, Bender D, Vantrease WC, Marshall AC, Johnson KD. The effects of whey vs. pea protein on physical adaptations following 8-weeks of high-intensity functional training (HIFT): A pilot study. *Sports*. 2019;7(1):12. <https://doi.org/10.3390/sports7010012>
12. Brisebois MF, Rigby BR, Nichols DL. Physiological and fitness adaptations after eight weeks of high-intensity functional training in physically inactive adults. *Sports*. 2018;6(4):146. <https://doi.org/10.3390/sports6040146>
13. Marine DA, Fabrizzi F, Nonaka KO, de Oliveira Duarte ACG, de Oliveira AM. Myostatin and follistatin mRNA expression in castrated rats Submitted to Resistance Training. *J Exerc Physiol Online*. 2018;21(1):162-71. https://www.researchgate.net/publication/323277679_Myostatin_and_follistatin_mRNA_expression_in_castrated_rats_submitted_to_resistance_training
14. Andersen LL, Tufekovic G, Zebis MK, Cramer RM, Verlaan G, Kjær M, et al. The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength.
15. Metabolism. 2005;54(2):151-6. <https://doi.org/10.1016/j.metabol.2004.07.012>
16. Kyröläinen H, Pihlainen K, Vaara JP, Ojanen T, Santtila M. Optimising training adaptations and performance in military environment. *J Sci Med sport*. 2018;21(11):1131-8. <https://doi.org/10.1016/j.jsams.2017.11.019>
17. Robben P, Neff LA. The true exercise of leadership: a Blend of balance, endurance and resistance training? *Mil Med*. 2019;184(5-6):115-6. <https://doi.org/10.1093/milmed/usz011>
18. Hasani M, Banitalabi E, Amirhoseini SE, Azimian E. Comparison of eight-week effect of the specific police training and combined with resistance training on body composition and physical fitness of Police officers. *J Police Med*. 2015;4(3):153-60. http://jpmed.ir/browse.php?a_id=384&slc_lang=en&sid=1&printcase=1&hbnr=1&hmb=1
19. Dijksma I, Arslan IG, van Etten-Jamaludin FS, Elbers RG, Lucas C, Stuiver MM. Exercise programs to reduce the risk of musculoskeletal injuries in military personnel: A systematic review and meta-analysis. *PM R*. 2020;12(10):1028-37. <https://doi.org/10.1002/pmrj.12360>
20. Hodzovic E. High-Intensity Functional Training= Efficient Exercise. 2017.
21. Poston WS, Haddock CK, Heinrich KM, Jahnke SA, Jitnarin N, Batchelor DB. Is high-intensity functional training (HIFT)/CrossFit safe for military fitness training? *Mil Med*. 2016;181(7):627-37. <https://doi.org/10.7205/milmed-d-15-00273>
22. Nara K, Kumar P, Rathee R, Kumar J. The compatibility of running-based anaerobic sprint test and Wingate anaerobic test: a systematic review and meta-analysis. *Pedagogy Physic Culture Sport*. 2022;26(2):134-43. <https://doi.org/10.15561/2649837.2022.0208>
23. Bahremand M, Hakak Dokht E, Moazzami M. A comparison of CrossFit and concurrent training on myonectin, insulin resistance and physical performance in healthy young women. *Arch Physiol Biochem*. 2020;1-7. <https://doi.org/10.1080/13813455.2020.1853173>
24. Mcweeny DK, Boule NG, Neto JHF, Kennedy MD. Effect of high intensity functional training and traditional resistance training on aerobic, anaerobic, and musculoskeletal fitness improvement. *J Physic Edu Sport*. 2020;20(4):1791-802. <http://dx.doi.org/10.7752/jpes.2020.04243>
25. Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS, et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. *Med Sci Sport Exerc*. 2002;34(2):364-80. <https://doi.org/10.1249/mss.0b013e3181915670>
26. Hermassi S, Wollny R, Schwesig R, Shephard RJ, Chelly MS. Effects of in-season circuit training on physical abilities in male handball players. *J Strength Cond Res*. 2019;33(4):944-57. <https://doi.org/10.1519/jsc.0000000000002270>
27. Muñoz-Martínez FA, Rubio-Arias JA, Ramos-Campo DJ, Alcaraz PE. Effectiveness of resistance circuit-based training for maximum oxygen uptake and upper-body one-repetition maximum improvements: A systematic review and meta-analysis. *Sport Med*. 2017;47:2553-68. <https://doi.org/10.1007/s40279-017-0773-4>
28. Roberson KB, Chowdhari SS, White MJ, Signorile JF. Loads and movement speeds dictate differences in power output during circuit training. *J Strength Cond Res*. 2017;31(10):2765-76. <https://doi.org/10.1519/jsc.0000000000001731>
29. Crawford DA, Drake NB, Carper MJ, DeBlauw J, Heinrich KM. Are changes in physical work capacity induced by high-intensity functional training related to changes in associated physiologic measures? *Sport*. 2018;6(2):26. <https://doi.org/10.3390/sports6020026>
30. Carnes AJ, Mahoney SE. Polarized versus high-intensity multimodal training in recreational runners. *Int J Sport physiol Perform*. 2019;14(1):105-12. <https://doi.org/10.1123/ijsspp.2018-0040>