

ORIGINAL ARTICLE**OPEN ACCESS****Correlation between Functional-Movement Screening Test with Stature Abnormalities and Upper Limb Function of Military Personnel**

Mohammad Reza Izadi¹ *PhD, **Ahmad Reza Yousefpour Dehaghani**¹ PhD Candidate, **Morteza Naji**¹ PhD, **Behrooz Jafari**² PhD Candidate

¹ Department of Physical Education & Sport Sciences, Faculty of Social & Cultural Sciences, Imam Hossein University, Tehran, Iran

² Pathology & Corrective Movements Group, Faculty of Physical Education & Sport Sciences, Tehran, Iran

ABSTRACT

AIMS: Standard functional-movement screening tests can be one of the predictors of musculoskeletal injuries in military forces. This study aimed to investigate the relationship between functional-movement screening test scores and abnormalities and function of the upper limbs of military personnel.

MATERIALS AND METHODS: The present study is correlational. The statistical population of this research was all military personnel working in one of the headquarters military centers in 2022. Forty people were selected purposefully after a public call. Checkerboard, New York Test Questionnaire and Disabilities of the Arm, Shoulder, and Hand Questionnaire (DASH) were used to measure upper body stature abnormalities. Then, all subjects performed seven Functional Movement Screen (FMS) test. Data were analyzed using Pearson's correlation coefficient test by SPSS 22 software.

FINDINGS: The average age of the participants was 30.30 ± 4.47 years, and their body mass index was 23.80 ± 6.12 . There was a relatively strong negative relationship between the score obtained from the FMS test and the occurrence of the hump ($p=0.001$; $r=-0.624$) and head forward ($r=-0.588$; $p=0.001$) posture abnormalities. There was a significant, negative, and moderate correlation between the score obtained from the FMS test and the disabilities of the arm, shoulder, and hand (DASH) questionnaire ($p=0.003$; $r=-0.358$).

CONCLUSION: In the present study, there was a strong and moderate negative correlation between the total score of the FMS test and some of the upper body posture abnormalities. It seems that the scores of the FMS test are affected by structural-stature complications in the upper body organs. On the other hand, based on the FMS and DASH scores, it can be argued that upper body stature abnormalities make a person more vulnerable to injury.

KEYWORDS: **Upper Limb; Postural; Military; Physical Functional Performance**

How to cite this article:

Izadi MR, Yousefpour Dehaghani AR, Naji M, Jafari B. *Correlation between Functional-Movement Screening Test with Height Abnormalities and Upper Limb Function of Military Personnel*. J Police Med. 2023;12(1):e10.

***Correspondence:**

Address: Department of Physical Education and sport Sciences, Faculty of Social and Cultural Sciences, Imam Hossein University, Tehran, Iran, Postal Code: 1698715861
Mail: izadi.mreza@gmail.com

Article History:

Received: 06/02/2023
Accepted: 05/04/2023
ePublished: 16/04/2023

Correlation between Functional-Movement Screening Test with Height Abnormalities and Upper Limb Function of Military Personnel

INTRODUCTION

The physical fitness of military forces always plays an important role in winning or losing wars. A level of physical fitness is required for each system, which can be improved through physical activity [1]. Ready forces with physical health can complete their roles and missions and realize the goals of the military organization. Therefore, knowing about the state of health and physical fitness of the military forces due to the risk factors that threaten their health and providing preventive solutions against injury is necessary to improve military capability [2]. According to studies, musculoskeletal injuries and, in parallel, height abnormalities cause the loss of a significant part of the optimal performance of military forces and are one of the important causes of reducing the usefulness of military training [3]. Functional-movement tests are a group of physical-skill tests used for different purposes [4]. Researchers have shown that some tests can also predict musculoskeletal injuries caused by moderate to severe physical activity. One of the most famous and widely used tests is the Functional Movement Screen (FMS) [4, 5]. In most of the studies in the field of evaluating soldiers and athletes with the FMS test, it was shown that this test is a valid and suitable tool for predicting the risk of injury in soldiers and athletes, and people who receive scores greater than 14 have fewer injuries compared to others, and people with a lack of symmetry in the tests have 2.73 times more vulnerable than others [4, 5]. According to Kiesel et al., there is a relationship between functional movement assessed by the FMS test and injury risk in professional soccer players [6]. Mohammadyari et al., who have conducted the effect of injury prevention exercises in military forces, have reported a higher FMS test score in the training group than in the non-training group [4]. Farahani et al. have studied 1820 Afsari university students in connection with the prevalence of military injuries. The rate of lower limb injuries in this population was 74%, which is significantly higher than in other areas, and most injuries were reported in the knee area [7]. Kaviani et al. also reported that the most common musculoskeletal injuries among seafarers are back pain (15.38%), knee pain (13.07%), and wrist pain (7.7%) [8]. A military person suffers from musculoskeletal disorders and pains following an injury or abnormal posturing, acutely or chronically. These pains can endanger the ability to do work, and the health and physical performance of these jobs are the main forces that provide the country's security [9]. Hand and shoulder girdle injuries in military personnel have different degrees, accompanied by pain and

reduced range of motion. In a study conducted by Shalamzari et al., entitled "Investigation of the prevalence of musculoskeletal abnormalities and its relationship with work history among nurses of a military medical center in Tehran" the results indicate a relatively high prevalence of forward head and hunchback abnormalities among military nursing personnel. Beyranvand et al., who conducted a study on evaluating the musculoskeletal condition of Islamic Republic of Iran Navy employees, also had similar results to the study by Shalamzari et al. [3]. Since the upper body muscles play a very important role in military activities, carrying weapons, climbing, pitched battle, and other activities, special attention should be paid to measuring the health status of the upper limbs in military forces [11]. There is a two-way relationship between causing damage and the appearance of stature abnormality; in a way that a chronic musculoskeletal injury causes a person to have a height abnormality in the medium term. Few studies have been conducted in connection with the function of the upper limb, and fewer studies have been done on the relationship between movement and function with injuries and musculoskeletal abnormalities of the upper body in military forces. Therefore, this study was conducted to investigate the relationship between the functional-movement screening test and the abnormalities and performance of the upper limbs of military personnel.

MATERIALS & METHODS

The present study is correlational. The statistical population of the research consisted of employees of a headquarters military center in Tehran between July and October 2022. According to the study entry and exit criteria, 30 people entered the study and were present until the end of the study. The subjects were selected without a history of injury in the visual system, vestibule, or any injury in the last year. The absence of neurological disease and postural abnormality also affected the research process. All subjects gave their consent to participate in this research. Having a history of surgery, bone fractures in the spine and upper and lower limbs, and congenital anomalies, especially in the spine, were considered exclusion criteria. Before starting the measurement, all the subjects tried to be aware of the different levels of the research and the confidentiality of the collected data. In the first session, before evaluating the motor screening tests, brief explanations were given to get familiar with the test process. Before the screening test, height was taken with a tape measure, weight with a hand scale, and body mass index was calculated by dividing weight

(kilograms) by height (meters). Checkerboard and New York tests were used to evaluate upper body abnormalities. Among the available methods for measuring abnormalities, the checkerboard and the New York test were used due to their ease of implementation, no need for expensive facilities and equipment, the safety of the short duration of the test, and their high accuracy and validity, and its linear correlation was reported 92% with radiographic criteria [12]. In order to evaluate the abnormalities, the vertical line was placed about one and a half meters from the checkerboard, and the spine was evaluated at a distance of about three meters from the vertical line in two frontal and sagittal planes by two experienced experts. Head tilt and shoulder symmetry were evaluated from the anterior view in the frontal plane. Then from the lateral view, the forward head position was checked using the reference points of the auricle, the seventh cervical vertebra, and the acromion. The back and lumbar arch were also evaluated according to the appropriate method and graded according to the New York test chart; based on this test, the severe condition was given a score of 1, the moderate condition was given a score of 3, and normal condition was given a score of 5. Subjects were asked to refrain from vigorous physical activity for 24 hours before the test and refrain from drinking stimulant drinks. For functional screening, FMS tests with a reliability of 0.89, reported in Cook et al.'s study, were used [13]. The FMS test included deep squats, step over lunge, shoulder movement, straight leg raise (SLR), swimming trunk, and rotational stability. The total maximum score in this test is 21, which according to the research report, a score of less than 14 makes people susceptible to injury [14]. Necessary explanations and verbal instructions related to the implementation of each movement pattern were given to each subject before the test, and they performed the test once as a trial. The method of scoring in the FMS test was as follows: performing movements correctly, without compensatory movements: 3 points; performing movements with compensatory movements: 2 points; inability to perform movements without compensatory movements: 1 point; Causing pain while performing movements or performing exposure test: zero points. A score of less than 14 was a warning sign of movements and risk of injury [14].

After completing the questionnaires, the subject was asked to remove all his upper body clothes to assess the spine's condition so that the researcher could easily observe the required signs. Kyphosis and lordosis were measured when the subject stood and spread his legs shoulder-width apart.

Then the examiner identified and marked the location of the spinous growths of the thoracic vertebrae (T2), the twelfth thoracic vertebra (T12), the second lumbar vertebra (L2), and the second sacral vertebra (S2).

Dash Questionnaire (DASH): This questionnaire evaluates the level of functional disability of people's shoulders in the face of hand-arm vibration. In this questionnaire, questions were asked about the ability to perform specific activities with the person's hands, and according to the answers given, points were given [11]. The reliability and validity of this questionnaire in Iran show that the relative content validity ratio (CVR) and content validity index (CVI) for the DASH questionnaire are 0.74 and 0.9, respectively [11, 15]. This questionnaire contains 30 questions (each has a score of 1 to 5) that measure the state of the person's upper limb function in the past week. In this questionnaire, questions are included to measure the level of a person's difficulty in doing daily tasks (21 questions), the intensity of pain during sleep and activity, joint stiffness (5 questions), and the effect of the upper body on social activities and work (4 questions). To use the questionnaire results, a person must answer at least 27 out of 30 questions. The score of this questionnaire is calculated out of 100, and to calculate the final score, after adding up the scores of each question and taking their average, the resulting number is subtracted by one and multiplied by 25; the higher number and closer to 100 shows the higher the disability. The present research used the Persianized (localized) DASH questionnaire [11, 15].

Ethical Permissions: All the levels of the present study were carried out based on the ethical guidelines in the research of the Research Institute of Physical Education and Sports Sciences with the ethics identifier IR.SSRC.REC-2211-1933.

Statistical Analysis: In this research, the Shapiro-Wilk test was used to check the normality of the data, and according to the normality, the Pearson correlation coefficient was used to check the relationship between the scores of the movement-functional screening test and the abnormalities and function of the upper limbs of the military. All data were collected in SPSS 22 software, and the significance level in this research was considered $p \leq 0.05$.

FINDINGS

30 samples with an average age of 30.30 ± 4.47 years, FMS 18.32 ± 2.24 , and FMS 13.33 ± 8.21 participated in this research. The frequency and percentage of different scores for each FMS test are listed in **Table 2**. The Pearson correlation

Correlation between Functional-Movement Screening Test with Height Abnormalities and Upper Limb Function of Military Personnel

test results showed a significant relationship between the FMS test and upper limb function, as well as the incidence of upper body posture abnormalities (Table 3). In stature anomalies and the DASH questionnaire, a lower score indicates a better performance, which leads to a negative number obtained from Pearson's moment correlation coefficient. The results showed a negative relationship between the score obtained from the FMS test and the incidence of hunchback ($p=0.001$; $r=-0.624$) and head forward ($p=0.001$; $r=-0.588$) abnormal posturing was fairly strong. There was a significant, negative, and moderate correlation between the score obtained from the FMS test and the Hand and Arm Disability Assessment Questionnaire (DASH) test ($p=0.003$; $r=-0.358$).

Table 1) Mean and dispersion range

Variable	mean	The standard deviation	minimal	maximum
Age (years)	30.30	4.47	24	35
height (cm)	174.30	7.31	168	183
weight (kg)	76.70	14.21	63	101
body mass index (kg/m ²)	23.80	6.12	21.7	30.5
FMS	18.32	2.24	13	21
Functional Disability of the Shoulder and Hand (DASH)	13.33	8.21	7.5	16.60

Table 2) Frequency and percentage of different scores for each FMS test

Row	Deep squat	Crossing the obstacle	lunch	Shoulder mobility	Active leg raising	Stability swimming	Rotational stability
1	(20%) 6	(6.6%) 2	0	0	0	(3.3%)1	0
2	(43%) 13	(46%) 14	(60%)18	(26%)8	(30%)9	(50%)15	(30%)9
3	(36%) 11	(46%) 14	(40%)12	(73%)22	(70%)21	(46%)14	(70%)15

Table 3) Pearson correlation coefficient test results between FMS and upper limb function

Anomalies	crooked neck	head forward	Asymmetric shoulder	hollow waist	hunchback	crooked back	DASH Questionnaire
r	-0.272	-0.588	0/411	-0.288	-0.624	0/307	-0.358
p	*0.003	*0.001	*0.001	*0.012	*0.001	*0.001	*0.003

*significant relationship ($p \leq 0.05$)

DISCUSSION

The current research aimed to investigate the relationship between the functional motor screening test and functional and functional abnormalities of the upper limb, and the results showed that there was a relatively strong negative relationship between the score obtained from the FMS test and the incidence of hunchback and forward head posture abnormalities, and between the score obtained from the FMS test and the disabilities of the arm, shoulder, and hand (DASH) questionnaire test and asymmetric shoulder complication, there was a significant, negative and moderate relationship. The reduction of trunk stability and quality of movement caused by postural abnormalities directly or compensating will cause a decrease in FMS scores in people, and this issue increases the possibility of people getting injured. This research showed a strong relationship between the occurrence of scoliosis and the reduction of FMS scores. Among the possible mechanisms of this relationship, it can be pointed out that the muscles of the back region suffer from severe weakness and pain due

to unprincipled methods of non-observance of ergonomic principles in jobs and administrative activities. Since the muscles of the back area play a major role in the range of motion of the upper limb and the occurrence of pain in the upper limb, their damage causes damage to the function of the upper body and, ultimately, the occurrence of functional disabilities in movements [11, 16]. Also, the results showed a relatively strong relationship between the prevalence of forward head syndrome and the decrease in FMS score. Head-forward and hunchback posture deformity due to the change in the back and neck vertebrae arch are compensatory and usually harmonious with each other; therefore, perhaps the intensity of this correlation can be attributed to the close and chain relationship of these two types of complications. The asymmetric shoulder condition, which had a negative and moderate relationship with the FMS scores, occurs due to the weakness of the stabilizing muscles of the shoulder girdle; while reducing the range of motion, it causes the inequality of muscle power, which directly affects parts of the FMS test such as swimming stability

and shoulder mobility [4]. Although in the present study, a weak relationship between lumbar depression and FMS scores was reported; in the study by Rahimi et al., who investigated the effect of selected central stability exercises on waist curvature and the functional movement screening test of women with the lower crossed syndrome; the results show that in both young and middle-aged groups, after the implementation of the training program, there was a significant increase in the variables of the lumbar vertebrae and the FMS test [17].

The shoulder movement test, one of the seven levels of the FMS test, evaluates the shoulder's range of motion bilaterally and reciprocally. This test requires normal movement of the scapula and scoliosis [18]. Studies have shown that FMS tests evaluate the examinee's upper and lower bodies separately or in combination. However, looking at the role of movement chains in the quality of performing a skill-control activity, all the movements of these tests are continuous upper body and lower body and also involve the central stabilizing muscles [14, 18]. Therefore, people with higher FMS scores have more strength, neuromuscular coordination, stability, and balance than those with lower FMS scores. As a result, although the FMS test is an effective assessment tool to identify the risk factor and prevent injury, it should be noted that this test can also be affected by the individual differences of athletes or military personnel. In order to better generalize the results of the FMS scores, researchers have suggested that each score of this test be examined and compared separately [19]. In the study of saeidnia et al., the DASH score in the studied population was similar to the present study's findings, which concluded that musculoskeletal factors have the greatest effect on the disability of military speedboat drivers [11]. In line with the present study, Buhang et al. in their study have concluded that upper limb disability is common in the subjects studied, and this means that upper limb disability in the main findings of this study is consistent with previous studies [20]. In their study, House et al. concluded that people exposed to vibration have significant upper limb disability [21]. This study also showed a relationship between the DASH score and several variables, among which the upper extremity pain score had the greatest effect. Because upper extremity pain is the most common musculoskeletal symptom caused by arm tremors, researchers concluded in their studies that musculoskeletal factors have the greatest impact on disability [22]. Regarding the significant relationship between functional movement screening test and upper limb function,

it should be noted that the questionnaire is used as a tool to evaluate joints function [15]. In their study, Vincent et al. investigated the relationship between the handstand swimming test in a closed chain of motion and DASH Shoulder, Arm, Wrist Joint Disability Questionnaire. In this study, he reported that the average correlation between the swimming test and the hand function questionnaire is significant and average [23]. Also, previous studies have shown that people who have obtained lower FMS scores are forced to use compensatory movement patterns, which causes an additional force to be applied to body structures and, as a result, creates structural-height heterogeneity and increases the probability of injury. [18]. The extra load of force caused by the creation of a structural-height inhomogeneity can cause chronic pain and limit the limb's function or range of motion. Regarding upper limb function, various other factors such as uneven distribution of pressure, chronic pain in hands and shoulder girdle, or even pelvic girdle directly affect upper limb function and need to identify the source of pain [10, 19].

Most of the studies were related to musculoskeletal disorders of people in various jobs, and there were few studies on soldiers and military personnel. Since correcting movements and appropriate sports exercises are also necessary to strengthen physical fitness factors [24]; therefore, choosing a suitable test for military personnel in order to prevent injury by trainers and sports specialists seems necessary and can be effective in reducing treatment costs and increasing the level of physical fitness and fighting ability [4, 5]. Therefore, according to the results obtained from this research, although this test has been introduced as an evaluation tool to prevent injury, its relationship with other performance tests and some physical fitness factors has not been investigated. Therefore, in future studies, it is suggested to compare the functional screening test with other functional tests and examine the relationship between the components of this test and joint function. Among the limitations of the current research are the researcher's inability to control all the internal and external risk factors of injury and the lack of accurate control of the nutrition of the research subjects.

CONCLUSION

Creating preventive solutions such as monitoring and movement-functional screenings at different time points, improving the ergonomics of the work environment and tools, designing corrective exercises as well as periodic monitoring under the supervision of experts can be effective

in preventing chronic musculoskeletal pain, performance loss, organizational financial losses and improving the quality of working life of staff. There was a strong and moderate negative correlation between the total score of the FMS test and some of the upper body posture abnormalities. It seems that the scores of the FMS test are affected by the structural-stature complications in the upper body organs. On the other hand, based on the FMS and DASH scores, it can be argued that the abnormalities of the upper body make a person more vulnerable to injury.

Clinical & Practical Tips in POLICE MEDICINE:

Chronic musculoskeletal pains, loss of performance, and organizational financial losses can be prevented by using standard tests to measure movement performance, which can improve the quality of work life of staff and military personnel. FMS test scores are a suitable predictor for diagnosing upper body posture complications in military personnel, and based on the FMS and DASH scores, it can be argued that upper body stature abnormalities, which are common in the headquarters military forces, make a person more vulnerable to injury. In general, the reduction of trunk stability and quality of movement caused by postural abnormalities directly or compensating will cause a decrease in FMS scores in individuals, which increases the incidence of injuries in military personnel.

Acknowledgments: The authors thank all the people who participated in this study.

Conflict of Interest: The authors stated that the present study has no conflict of interest.

Authors Contribution: Mohammadreza Izadi (presenting the idea and design of the study, data collection, and statistical analysis); Ahmadreza Yousefpour (presenting the idea and design of the study, data collection); Morteza Naji (data interpretation and data collection); Behrouz Jafari (data collection and statistical analysis); All the authors participated in the initial writing of the article and its revision, and all of them accept the responsibility for the accuracy and correctness of the contents of this article with the final approval of this article.

Funding Sources: This study is the result of a research project with the financial support of Imam Hossein University.

نشریه طب انتظامی

۶ دسترسی آزاد

مقاله اصیل

ارتباط بین آزمون غربالگری عملکردی- حرکتی با ناهنجاری‌های قامتی و عملکرد اندام فوقانی نظامیان

محمد رضا ایزدی^۱، احمد رضا یوسف پور دهاقانی^۱، مرتضی ناجی^۱، بهروز جعفری^۲

^۱ گروه تربیت بدنی و علوم ورزشی، دانشکده علوم اجتماعی و فرهنگی، دانشگاه جامع امام حسین (ع)، تهران، ایران.

^۲ گروه آسیب‌شناسی و حرکات اصلاحی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تهران، تهران، ایران.

چکیده

اهداف: آزمون‌های استاندارد غربالگری عملکردی- حرکتی می‌تواند یکی از عوامل پیش‌بینی‌کننده بروز آسیب‌های اسکلتی- عضلانی در نیروهای نظامی باشد. هدف از این مطالعه، بررسی ارتباط بین نمرات آزمون غربالگری عملکردی- حرکتی با ناهنجاری‌ها و عملکرد اندام فوقانی نظامیان بود.

مواد و روش‌ها: مطالعه حاضر از نوع همبستگی است. جامعه آماری این تحقیق تمامی پرسنل نظامی شاغل در یکی از مراکز نظامی ستادی در سال ۱۴۰۱ بود. ۴۰ نفر پس از فراخوان عمومی به صورت هدفمند انتخاب شدند. برای سنجش ناهنجاری‌های قامتی بالاتنه از صفحه شطرنجی و پرسشنامه آزمون نیوبیورک و پرسشنامه ناتوانی عملکردی شانه و دست (DASH) استفاده شد. سپس تمامی آزمودنی‌ها به انجام آزمون‌های حرکتی عملکردی هفت گانه (FMS) پرداختند. داده‌ها با استفاده از آزمون ضریب همبستگی پیرسون توسط نرم‌افزار SPSS 22 تجزیه و تحلیل شدند.

یافته‌ها: میانگین سنی افراد شرکت‌کننده ۴۷ سال و شاخص توده بدنی ایشان $23/80 \pm 6/12$ بود. بین امتیاز به دست آمده از آزمون FMS و بروز ناهنجاری‌های قامتی پشت گرد $r=0/001$ ؛ $p=0/001$ و سر به جلو $r=-0/588$ ؛ $p=0/001$ (ارتباط منفی و نسبتاً قوی وجود داشت. بین امتیاز به دست آمده از آزمون FMS و آزمون پرسشنامه سنجش ناتوانی دست و بازو (DASH) ارتباط معنادار و منفی و متوسطی وجود داشت $r=-0/358$ ؛ $p=0/003$).

نتیجه‌گیری: در مطالعه حاضر بین نمره کل آزمون FMS با برخی از ناهنجاری‌های قامتی بالاتنه، ارتباط و همبستگی منفی قوی و متوسطی وجود داشت. به نظر می‌رسد که نمرات آزمون FMS متأثر از عارضه‌های ساختاری- قامتی در اندام‌های بالاتنه است و از طرف دیگر، بر اساس نمرات FMS و DASH می‌توان چنین استدلال کرد که ناهنجاری‌های قامتی بالاتنه، فرد را بیشتر در معرض آسیب قرار می‌دهد.

کلیدواژه‌ها: اندام فوقانی، قامت، نظامی، عملکرد جسمی

تاریخچه مقاله:

دریافت: ۱۴۰۱/۱۱/۱۷
پذیرش: ۱۴۰۲/۰۱/۱۶
انتشار: ۱۴۰۲/۰۱/۲۷

نویسنده مسئول:

آدرس پستی: گروه تربیت بدنی و علوم ورزشی، دانشکده علوم اجتماعی و فرهنگی دانشگاه جامع امام حسین (ع).
تهران، ایران، کد پستی: ۱۶۹۸۷۱۵۸۶۱
پست الکترونیکی: izadi.mreza@gmail.com

نحوه استناد به مقاله:

Izadi MR, Yousefpour Dehaghani AR, Naji M, Jafari B. Correlation between Functional-Movement Screening Test with Height Abnormalities and Upper Limb Function of Military Personnel. J Police Med. 2023;12(1):e10.

مقدمه

این دردها می‌تواند توانایی انجام کار، سلامتی و عملکرد جسمانی این مشاغل را که به عنوان اصلی‌ترین نیروهای تأمین‌کننده امنیت کشور هستند را با خطر مواجه کند [۹]. آسیب دست‌ها و کمریند شانه‌ای در نظامیان درجات مختلفی دارد که همراه با درد و کاهش دامنه حرکتی عضو است. در مطالعه‌ای که توسط شلمزماری و همکاران با عنوان بررسی میزان شیوع ناهنجاری‌های اسکلتی-عضلانی و ارتباط آن با سابقه کاری در پرستاران یک مرکز درمانی نظامی شهر تهران انجام شده است، نتایج حاکی از شیوع نسبتاً بالای ناهنجاری‌های سر به جلو و گوژپشتنی در میان پرسنل پرستاری نظامی است [۱۰]. بیرونی و همکاران که مطالعه‌ای با عنوان ارزیابی وضعیت اسکلتی-عضلانی کارکنان نداجا انجام داده‌اند نیز نتایجی مشابه مطالعه شلمزماری و همکاران داشته‌اند [۱۱].

از آنجایی که عضلات بالاتنه در فعالیت‌های نظامی، حمل سلاح، صعودها، جنگ‌های تن به تن و سایر فعالیت‌ها نقش بسیار مهمی را ایفا می‌کند باید به سنجش وضعیت سلامتی اندام فوقانی در نیروهای نظامی توجه خاصی کرد [۱۱]. رابطه‌ای دو طرفه بین ایجاد آسیب و بروز ناهنجاری قامتی وجود دارد؛ به نحوی که یک آسیب اسکلتی-عضلانی مزمن در میان مدت، فرد را دچار ناهنجاری قامتی می‌کند. در ارتباط با نقش و عملکرد اندام فوقانی مطالعات اندکی انجام شده است و کمتر به ارتباط‌سنگی حرکتی-عملکردی با آسیب‌ها و ناهنجاری‌های اسکلتی-عضلانی بالاتنه در نیروهای نظامی پرداخته شده است. بنابراین این مطالعه با هدف بررسی ارتباط بین آزمون غربالگری عملکردی-حرکتی با ناهنجاری‌ها و عملکرد اندام فوقانی نظامیان انجام شد.

مواد و روش‌ها

مطالعه حاضر از نوع همبستگی است. جامعه آماری تحقیق را کارکنان یک مرکز نظامی ستادی در شهر تهران و در بازه زمانی مردادماه تا آبان‌ماه ۱۴۰۱ تشکیل دادند. با توجه به معیارهای ورود و خروج مطالعه، ۳۰ نفر وارد مطالعه شدند و تا انتهای مطالعه حضور داشتند. آزمودنی‌ها بدون سابقه آسیب‌دیدگی در سیستم بینایی، دهليزی و بدون هیچ‌گونه آسیب‌دیدگی در یک سال اخیر انتخاب شدند. عدم داشتن بیماری نورولوژیکی و ناهنجاری وضعیتی نیز بر روند تحقیق اثرگذار بود. تمام آزمودنی‌ها موافقت خود را برای مشارکت در این تحقیق اعلام کردند. داشتن سابقه جراحی، شکستگی استخوان در ستون فقرات و اندام‌های فوقانی و تحتانی، داشتن ناهنجاری‌های مادرزادی به ویژه در ستون فقرات به عنوان معیارهای خروج از مطالعه در نظر گرفته شدند.

پیش از شروع اندازه‌گیری سعی شد تمامی آزمودنی‌ها نسبت به مراحل مختلف اجرای تحقیق و همچنین محضمانه‌ماندن داده‌های جمع‌آوری شده آگاه شوند.

آمادگی جسمانی نیروهای نظامی همواره نقش مهمی در پیروزی یا شکست در جنگ‌ها دارد. برای هر نظامی، سطحی از آمادگی جسمانی لازم است که آن را می‌توان از طریق انجام فعالیت‌های بدنی بهبود داد [۱]. نیروهای آماده که در سلامت جسمی به سر می‌برند، می‌توانند نقش‌ها و مأموریت‌های خود را به طور کامل ایفا کنند و سازمان نظامی را به اهدافش نزدیکتر کنند. به این دلایل اطلاع از وضعیت سلامت و آمادگی جسمانی نیروهای نظامی، ریسک‌فاكتورهای تهدیدکننده سلامت آنها و راهکارهای پیشگیرانه از آسیب‌دیدگی آنها برای ارتقای توان نظامی ضروری است [۱۲]. مطالعات نشان می‌دهد، آسیب‌های اسکلتی-عضلانی و به موازات آن ناهنجاری‌های قامتی، موجب از دست رفتن بخش قابل توجهی از عملکرد بهینه نیروهای نظامی می‌شود و از علل مهم کاهش سودمندی آموزش‌های نظامی است [۱۳].

آزمون‌های عملکردی-حرکتی، گروهی از آزمون‌های جسمانی-مهارتی هستند که برای اهداف متفاوتی مورد استفاده قرار می‌گیرند [۱۴]. پژوهشگران نشان داده‌اند برخی از این آزمون‌ها می‌توانند آسیب‌های اسکلتی-عضلانی ناشی از فعالیت بدنی با شدت متوسط تا شدید را نیز پیش‌بینی کنند. یکی از معروف‌ترین و پرکاربردترین آزمون‌ها، آزمون غربالگری عملکرد حرکتی (Movement Functional) (FMS) Screen است [۱۴، ۱۵]. در بیشتر مطالعات در زمینه ارزیابی نظامیان و ورزشکاران با آزمون FMS نشان داده شده است که این آزمون ابزار معتبر و مناسبی برای پیش‌بینی خطر آسیب نظامیان و ورزشکاران است و افراد دریافت‌کننده نمرات بیشتر از ۱۴، آسیب کمتری در مقایسه با دیگران دارند و افراد دارای فقدان تقارن در آزمون‌ها، ۲/۷۳ برابر Kiesel بیشتر از دیگران در معرض آسیب‌اند [۱۴، ۱۵]. طبق نظر و همکاران، بین حرکت عملکردی ارزیابی شده به وسیله آزمون FMS و ریسک‌پذیری آسیب در فوتالیست‌های آزمون FMS وجود دارد [۱۶]. محمدیاری و همکاران نیز که تأثیر تمرينات پیشگیرانه از آسیب را در نیروهای نظامی انجام داده‌اند، نمره بالاتر آزمون FMS را در گروه تمرين نسبت به گروه بدون تمرين گزارش کرده‌اند [۱۴]. در ارتباط با آمار شیوع آسیب‌های نظامیان، فرهانی و همکاران، ۱۸۲۰ نفر از دانشجویان دانشگاه افسری را مورد مطالعه قرار داده‌اند. میزان آسیب‌های اندام تحتانی در این جمعیت، ۷۴ درصد بوده که به طور معناداری بیشتر از دیگر نواحی بوده و در ناحیه زانو بیشترین آسیب گزارش شده است [۱۷]. کاویانی و همکاران نیز شایع‌ترین آسیب اسکلتی-عضلانی در بین دریانوردان را کمر درد (درصد ۱۵/۳۸)، زانو درد (درصد ۱۳/۰۷) و درد مچ دست (درصد ۷/۷) گزارش کرده‌اند [۱۸].

متعاقب وجود یک آسیب یا ناهنجاری قامتی چه به صورت حاد و چه به صورت مزمن، فرد نظامی دچار اختلالات و دردهای اسکلتی-عضلانی می‌گردد. بروز

ارزیابی وضعیت ستون فقرات خارج کرده تا محقق بتواند نشانه‌های مورد نیاز را به راحتی مشاهده کند. اندازه‌گیری میزان انحنای گوژپشتی (کایفون) و گودی کمر (لوردوز) به این صورت انجام شد که آزمودنی در وضعیت ایستاده قرار می‌گرفت و پاها را به اندازه عرض شانه باز می‌کرد. سپس آزمونگر محل زایده‌های خاری دومین مهره پشتی (T2)، دوازدهمین مهره پشتی (T12)، دومین مهره کمری (L2) و دومین مهره ساکرال (S2) را مشخص و علامت‌گذاری می‌کرد.

پرسشنامه دش (DASH): این پرسشنامه سطح ناتوانی عملکردی شانه افراد در مواجهه با ارتعاش دست بازو را تحت سنجش قرار می‌دهد. در این پرسشنامه سئوالاتی در رابطه با توانایی انجام فعالیت‌های خاص با دست از فرد پرسیده شد و با توجه به پاسخ‌های داده شده، امتیازدهی صورت گرفت [۱]. بررسی پایی‌یی و روایی این پرسشنامه در ایران نشان می‌دهد که ضریب روایی نسبی محتوا (CVR) و شاخص روایی محتوا (CVI) به ترتیب برای پرسشنامه DASH ۰/۷۴ و ۰/۹ است [۱۵]. این پرسشنامه شامل ۳۰ سئوال است (هر سئوال دارای نمره ۱ تا ۵) که وضعیت عملکرد اندام فوکانی فرد را در یک هفته گذشته می‌سنجد. در این پرسشنامه سئوالاتی جهت سنجش میزان مشکل فرد در انجام کارهای روزمره (۲۱ سئوال)، شدت درد در حالت خواب و فعالیت، سفتی مفصل (۵ سئوال) و تأثیر اندام فوکانی بر فعالیت‌های اجتماعی و شغل (۴ سئوال) گنجانده شده است. برای استفاده از نتایج پرسشنامه مورد استفاده، فرد باید حداقل به ۲۷ سئوال از ۳۰ سئوال پاسخ دهد. نمره این پرسشنامه از ۱۰۰ محاسبه می‌شود و برای محاسبه نمره نهایی پس از جمع نمره تک تک سئوالات و گرفتن میانگین آنها، عدد حاصل شده منهای ۱ شده و ضرب در ۲۵ می‌شود؛ هرچه عدد بالاتر و به ۱۰۰ نزدیک‌تر باشد، نشان‌دهنده میزان ناتوانی بیشتر فرد است. در تحقیق حاضر از پرسشنامه DASH فارسی‌شده (بومی‌شده) استفاده گردید [۱۵].

ملاحظات اخلاقی: تمامی مراحل مطالعه حاضر بر اساس دستورالعمل‌های اخلاق در پژوهش پژوهشگاه تربیت بدنی و علوم ورزشی با شناسه اخلاق ۲۲۱۱--REC.SSRC.IR ۱۹۳۳ انجام شد.

تجزیه و تحلیل آماری: در این تحقیق برای بررسی طبیعی بودن داده‌ها از آزمون شایپرو-ویلک استفاده شد و با توجه به اینکه داده‌ها نرمال بودند، از ضریب همبستگی پیرسون برای بررسی رابطه نمرات آزمون غربالگری حرکتی- عملکردی با ناهنجاری‌ها و عملکرد اندام فوکانی نظامیان استفاده شد. همه داده‌ها در نرم‌افزار SPSS 22 جمع‌آوری شدند و سطح معناداری در این تحقیق $p < 0.05$ در نظر گرفته شد.

در جلسه اول قبل از ارزیابی آزمون‌های غربالگری حرکتی، توضیحات مختصراً جهت آشنایی با فرآیند آزمون داده شد. قبل از آزمون غربالگری، قد با متر دیواری و وزن با ترازوی عقربه‌ای گرفته شد و شاخص توده بدنی از تقسیم وزن (بر حسب کیلوگرم) به قد (بر حسب متر) محاسبه شد. به منظور ارزیابی ناهنجاری‌های بالاتنه از صفحه شطرنجی و آزمون نیویورک استفاده شد. از میان روش‌های موجود جهت اندازه‌گیری ناهنجاری‌ها، صفحه شطرنجی و آزمون نیویورک به دلیل سهولت اجرا، نیاز نداشت به امکانات و وسایل گران‌قیمت، بی‌خطر بودن مدت زمان کوتاه اجرای آزمون و سریع بودن و دقت و روایی بالای آنها، مورد استفاده قرار گرفت که همبستگی خطی آن با معیار رادیوگرافی ۹۲ درصد گزارش شده است [۱۲].

جهت ارزیابی ناهنجاری‌ها، خط شاقولی در حدود یک متر و نیم از صفحه شطرنجی قرار گرفت و ارزیابی ستون فقرات در فاصله حدوداً سه متری خط شاقولی در دو صفحه فرونتال و ساجیتال توسط دو متخصص با تجربه انجام شد. از نمای قدامی در صفحه فرونتال وضعیت کجی سر و تقارن شانه‌ها مورد ارزیابی قرار گرفت و سپس از نمای جانبی با استفاده از نقاط مرجع ترمه گوش، مهره هفتم گردنی، زایده آکرومیون، وضعیت سر به جلو بررسی شد. قوس پشتی و کمری نیز بر اساس روش مربوطه مورد ارزیابی قرار گرفت و بر اساس نمودار آزمون نیویورک نمره داده شد؛ که اساس این آزمون به وضعیت شدید نمره ۱ به وضعیت متوسط نمره ۳ و وضعیت عادی نمره ۵ تعلق گرفت. از آزمودنی‌ها خواسته شد قبل از آزمون به مدت ۲۴ ساعت از انجام فعالیت‌های ورزشی شدید اجتناب کنند و از نوشیدن هرگونه نوشیدنی محرک‌زا خودداری کنند. برای غربالگری عملکردی از آزمون‌های FMS با پایی‌یی ۰/۸۹ که در مطالعه Cook و همکاران گزارش شده بود، استفاده شد [۱۳]. آزمون FMS شامل آزمون‌های squat Deep، gام، برداشت از روی مانع lunge، تحرک‌پذیری شانه، بالا آوردن فعال پا (SLR)، شنای پایداری تنه و پایداری چرخشی بود. مجموع حداکثر امتیازات در این آزمون ۲۱ است که طبق گزارش تحقیقات، امتیاز کمتر از ۱۴ فرد را مستعد آسیب می‌سازد [۱۴]. توضیحات لازم و دستورالعمل‌های گفتاری مربوط به اجرای هر گلوب حرکتی، قبل از اجرای آزمون به هر آزمودنی گفته شد و آزمون را یکبار به صورت آزمایشی انجام دادند. نحوه امتیازدهی در آزمون FMS بدین صورت بود: انجام صحیح حرکات، بدون حرکات جبرانی: ۳ امتیاز؛ انجام حرکات با حرکات جبرانی: ۲ امتیاز؛ عدم توانایی انجام حرکات بدون حرکات جبرانی: ۱ امتیاز؛ ایجاد درد در حین انجام حرکات یا انجام آزمون آشکارسازی: صفر امتیاز. امتیاز کمتر از ۱۴، علامت هشدار در حرکات و در معرض ریسک آسیب‌دیدگی بود [۱۴].

پس از تکمیل پرسشنامه‌ها از آزمودنی خواسته شد که کل لباس‌های بالاتنه خود را به منظور

یافته‌ها

به جلو ارتباط منفی و نسبتاً قوی وجود داشت و بین امتیاز به دست آمده از آزمون FMS و آزمون پرسش‌نامه سنجش ناتوانی دست و بازو (DASH) و عارضه شانه نامتقارن، ارتباط معنادار و منفی و متوسط وجود داشت. روش انت کاهش ثبات تن و کیفیت حرکت ناشی از ناهنجاری‌های قامتی به صورت مستقیم یا به صورت جبرانی سبب کاهش نمرات FMS در افراد خواهد شد و این مسئله احتمال آسیب‌دیدگی افراد را می‌افزاید.

نتایج تحقیق حاضر نشان داد، ارتباط قوی بین بروز گردپشتی و کاهش نمره FMS وجود داشت. از مکانیسم‌های احتمالی این رابطه می‌توان به این نکته اشاره کرد که عضلات ناحیه پشت بر اثر شیوه‌های غیراصولی عدم رعایت اصول ارگonomی در مشاغل و فعالیت‌های اداری دچار ضعف شدید و درد می‌شود. از آنجا که عضلات ناحیه پشت در دامنه حرکتی اندام فوقانی و در بروز درد اندام فوقانی نقش عمده‌ای دارند، آسیب آنها موجب آسیب به عملکرد بالاتنه و درنهایت بروز ناتوانی‌های عملکردی در حرکات می‌شود [۱۶]. همچنین نتایج نشان داد بین شیوه عارضه سر به جلو با کاهش نمره FMS ارتباط نسبتاً قوی وجود داشت. ناهنجاری قامتی سر به جلو و گوژپشتی به علت تغییر قوس ستون مهره‌های پشتی و گردنی به صورت جبرانی و معمولاً هماهنگ به یکدیگر عارض می‌شوند؛ بنابراین شاید بتوان شدت این همبستگی را به ارتباط نزدیک و زنجیره‌وار این دو نوع عارضه نسبت داد. عارضه شانه نامتقارن نیز که رابطه منفی و متوسطی با نمرات FMS داشت، بر اثر ضعف عضلات ثبات دهنده کمریند شانه‌ای اتفاق می‌افتد، ضمن کاهش دامنه حرکتی، نابرابری نیروی عضلات را سبب می‌شود که به نوبه خود بخش‌هایی از آزمون FMS مانند شنای پایداری و تحرک شانه را مستقیماً تحت تأثیر قرار می‌دهد [۱۴]. هر چند در مطالعه حاضر ارتباط ضعیف بین گودی کمر و نمرات FMS گزارش شد؛ در مطالعه رحیمی و همکاران که تأثیر تمرينات منتخب ثبات مرکزی بر انحرافی کمر و آزمون غربالگری حرکت عملکردی زنان با سندروم متقاطع تحتانی را بررسی کرده‌اند؛ نتایج نشان می‌دهد در هر دو گروه سنی جوان و میانسال پس از اجرای برنامه تمرينی در متغیرهای گودی کمری و آزمون FMS افزایش معنادار مشاهده شده است [۱۷].

آزمون تحرک‌پذیری شانه که یکی از هفت مرحله از مراحل آزمون FMS است، دامنه حرکتی شانه را به صورت دوطرفه و متقابل ارزیابی می‌کند و این آزمون به حرکت طبیعی کتف و بازشدن ستون فقرات نیاز دارد [۱۸]. مطالعات نشان داده‌اند آزمون‌های FMS بالاتنه و پایین تن‌ه فرد آزمون‌شونده را جداگانه یا ترکیبی مورد ارزیابی قرار می‌دهد، اما با نگاه به نقش زنجیره‌های حرکتی در کیفیت انجام یک فعالیت مهارتی-کنترلی می‌توان گفت همه حرکت‌های این آزمون‌ها به صورت پیوسته بالا تن و

در این پژوهش ۳۰ نمونه با میانگین سنی $۳۰/۳۰\pm ۴/۴۷$ سال، $۱۸/۳۲\pm ۲/۲۴$ FMS و میزان ناتوانی عملکردی شانه و دست $۱۳/۳۳\pm ۸/۲۱$ ، شرکت کردند. فراوانی و درصد نمرات مختلف برای هر آزمون FMS در جدول ۲ درج شد. نتایج آزمون همبستگی پرسون نشان داد، بین آزمون FMS و عملکرد اندام فوقانی و نیز بروز ناهنجاری‌های قامتی بالاتنه برای ارتباط معناداری وجود داشت (جدول ۳). لازم به ذکر است که در ناهنجاری‌های قامتی و پرسش‌نامه DASH، امتیاز کمتر نشان دهنده عملکرد بهتر است که این امر منجر به منفی شدن عدد به دست آمده از ضریب همبستگی گشتاوری پرسون می‌شود. نتایج نشان داد، بین امتیاز به دست آمده از آزمون FMS و بروز ناهنجاری‌های قامتی گوژپشتی $p=0/001$ ؛ $r=-0/588$ ، ارتباط منفی و نسبتاً قوی به جلو $p=0/01$ ؛ $r=-0/244$ و سر وجود داشت. بین امتیاز به دست آمده از آزمون FMS و آزمون پرسش‌نامه سنجش ناتوانی دست و بازو (DASH) ارتباط معنادار و منفی و متوسط وجود داشت $p=0/003$ ؛ $r=-0/358$.

جدول ۱) میانگین و دامنه پراکندگی

متغیر	میانگین انحراف استاندارد کمینه بیشینه
سن (سال)	$۳۰/۳۰\pm ۴/۴۷$
قد (سانتی متر)	$۱۷۴/۳۰\pm ۷/۳۱$
وزن (کیلوگرم)	$۷۶/۷۰\pm ۱۴/۲۱$
شاخص توده بدنی (kg/m ²)	$۲۳/۸۰\pm ۶/۱۲$
FMS	$۱۸/۱۳۲\pm ۲/۲۴$
میزان ناتوانی عملکردی شانه و دست (DASH)	$۱۳/۳۳\pm ۸/۳۱$

جدول ۲) فراوانی و درصد نمرات مختلف برای هر آزمون FMS

ردیف	دستکار	عمق	مانع	لانچ	عبور از	تحرک‌پذیری بالا آوردن	شنای پایداری
۱						$۲/۶/۶\pm ۰/۲۰$	$۱/۳/۳\pm ۰$
۲						$۱۴/۴۶\pm ۹/۲۶$	$۱۳/۴۳\pm ۱۸/۶۰$
۳						$۱۲/۴۶\pm ۲۱/۷۰$	$۱۱/۳۶\pm ۱۴/۴۰$

جدول ۳) نتایج آزمون ضریب همبستگی پرسون بین FMS و عملکرد اندام‌های فوقانی

ناهنجاری گردنی	کج جلو	سر به شانه نا	کمر گود گوژپشتی	پشت پرسش‌نامه DASH
$-0/358$	$-0/307$	$-0/624$	$-0/288$	$-0/272$
$*0/003$	$*0/001$	$*0/012$	$*0/001$	$*0/003$

*ارتباط معنادار $p<0/05$

بحث

هدف از پژوهش حاضر، بررسی ارتباط بین آزمون غربالگری عملکردی حرکتی با ناهنجاری‌های قامتی و عملکردی اندام فوقانی بود و نتایج نشان داد، بین امتیاز به دست آمده از آزمون FMS و بروز ناهنجاری‌های قامتی گوژپشتی و سر

مزمون دست‌ها و کمریند شانه‌ای یا حتی کمریند لگنی مستقیماً بر عملکرد اندام فوکانی تأثیر می‌گذارد و نیاز به شناسایی منشأ درد دارد [۱۰، ۱۹]. اکثر مطالعات انجام‌شده در رابطه با اختلالات اسکلتی-عضلانی افراد در شغل‌های گوناگون بود و مطالعات بر روی سربازان و نظامیان اندک بوده است. از آنجایی که انجام حرکات اصلاحی و تمرینات ورزشی مناسب نیز برای تقویت فاکتورهای آمادگی جسمانی ضروری است [۲۲]؛ بنابراین انتخاب یک آزمون مناسب برای افراد نظامی جهت پیشگیری از آسیب توسط مریبیان و متخصصان ورزشی لازم و ضروری به نظر می‌رسد و می‌تواند در کاهش هزینه‌های درمانی و افزایش سطح آمادگی جسمانی و توان رزم مؤثر باشد [۴، ۵]. از این رو با توجه به نتایج به دست آمده از این پژوهش می‌توان گفت که علی‌رغم اینکه این آزمون به عنوان ابزار ارزیابی در پیشگیری از وقوع آسیب معرفی شده است همچنان میزان ارتباط آن با دیگر آزمون‌های عملکردی و برخی از عوامل آمادگی جسمانی مورد بررسی قرار نگرفته است. بنابراین پیشنهاد می‌شود در مطالعات آینده به مقایسه آزمون غریالگری عملکردی با سایر آزمون‌های عملکردی و بررسی ارتباط اجزا این آزمون با عملکرد مفاصل مورد توجه قرار گیرد. از محدودیت‌های تحقیق حاضر به عدم توانایی محقق در کنترل تمامی عوامل خطرزای درونی و بیرونی آسیب و عدم کنترل دقیق تغذیه آزمودنی‌های تحقیق می‌توان اشاره کرد.

نتیجه‌گیری

ایجاد راهکارهایی پیشگیرانه‌ای همچون پایش و غریالگری‌های حرکتی-عملکردی در مقاطع مختلف زمانی، اصلاح ارگونومی محیط کار و ابزار، طراحی تمرینات اصلاحی و نیز نظارت‌های دوره‌ای زیر نظر متخصصین می‌تواند در پیشگیری از دردهای مزمون اسکلتی-عضلانی، افت عملکرد، ضررهای مالی سازمانی و ارتقای کیفیت زندگی کاری کارکنان اثربخش باشد. بین نمره کل آزمون FMS با برخی از ناهنجاری‌های قامتی بالاتنه ارتباط همبستگی منفی قوی و متوسطی وجود داشت. به نظر می‌رسد که نمرات آزمون FMS متأثر از عارضه‌های ساختاری-قامتی در اندام‌های بالاتنه است و از طرف دیگر بر اساس نمرات FMS و DASH می‌توان چنین استدلال کرد که ناهنجاری‌های قامتی بالاتنه، فرد را بیشتر در معرض آسیب قرار می‌دهد.

نکات بالینی و کاربردی در طب انتظامی: دردهای مزمون اسکلتی-عضلانی، افت عملکرد، ضررهای مالی سازمانی با استفاده از آزمون‌های استاندارد سنجش عملکرد حرکتی قابل پیشگیری هستند که می‌تواند موجب ارتقای کیفیت زندگی کاری کارکنان و نیروهای نظامی سنتادی گردد. نمرات آزمون FMS پیش‌بینی‌کننده مناسبی برای تشخیص عارضه‌های قامتی بالاتنه در نظامیان است و بر اساس

پایین تنه و نیز عضلات پایدارکننده مرکزی را درگیر می‌کند [۱۸، ۱۹]. بنابراین با توجه به موارد ذکر شده، افرادی که نمرات FMS بیشتری کسب می‌کنند، نسبت به افرادی که نمرات FMS کمتری کسب می‌کنند، از قدرت، هماهنگی عصبی-عضلانی، ثبات و تعادل بیشتری برخوردارند. درنتیجه، هرچند نتایج نشان داده‌اند که آزمون FMS ابزار ارزیابی مؤثری برای شناسایی عامل خطر و جلوگیری از آسیب است، اما باید در نظر داشت که این آزمون نیز می‌تواند متأثر از تفاوت‌های فردی ورزشکار یا فرد نظامی باشد. برای اینکه بهتر بتوان نتایج نمرات FMS را تعمیم داد، محققان پیشنهاد کرده‌اند که تک تک نمرات این آزمون به صورت جداگانه بررسی و مقایسه گردد [۱۹]. در مطالعه سعیدنیا و همکاران نمره DASH در جمعیت مورد مطالعه، مشابه یافته‌های مطالعه حاضر بود که نتیجه گرفتند که عوامل اسکلتی-عضلانی بیشترین تأثیر را در ناتوانی رانندگان قایق‌های تندر و نظامی دارد [۱۱]. همسو با مطالعه حاضر، Buhang و همکاران در مطالعه خود به این نتیجه دست یافته‌اند که ناتوانی در اندام فوکانی در افراد مورد مطالعه در آزمودنی‌ها شایع است و این به آن معنا است که ناتوانی در اندام فوکانی در یافته‌های اصلی این مطالعه با مطالعات آن دارد [۲۰]. همکاران در مطالعه خود به این نتیجه دارای ناتوانی قابل توجه در اندام فوکانی [۲۱] هستند. این مطالعه همچنین ارتباطی بین نمره DASH و چندین متغیر را نشان داد که در این بین نمره درد اندام فوکانی رایج‌ترین علامت تأثیر را داشت. از آنجا که درد اندام فوکانی رایج‌ترین علامت اسکلتی-عضلانی ناشی از لرزش بازو است، محققان نتیجه گرفته‌اند که عوامل اسکلتی-عضلانی بیشترین تأثیر را در ناتوانی در مطالعه خود دارند [۲۲]. در ارتباط با رابطه معنادار آزمون غریالگری حرکت عملکردی و عملکرد اندام فوکانی این نکته مورد توجه قرار گیرد که از پرسشنامه به عنوان ابزاری جهت ارزیابی عملکرد مفاصل استفاده شود Vincent و همکاران در مطالعه خود ارتباط بین آزمون شنای روی دست در زنجیره حرکتی بازو و پرسشنامه ناتوانی عملکرد مفصل شانه، بازو مج دست DASH پرداخته است. او در این مطالعه گزارش کرده که ارتباط متوجه بین آزمون شنا و پرسشنامه عملکرد دست معنادار و متوسط است [۲۳]. همچنین، مطالعات پیشین نشان داده‌اند، افرادی که نمرات FMS کمتری کسب کرده‌اند، مجبور به استفاده از الگوهای حرکتی جبرانی‌اند که این امر موجب می‌شود نیروی اضافی بر برخی ساختارهای بدن وارد شود و درنتیجه سبب ایجاد ناهمگونی ساختاری-قامتی می‌شود و احتمال بروز آسیب بالا می‌رود [۱۸]. بار اضافی نیرو و ناشی از ایجاد یک ناهمگونی ساختاری-قامتی می‌تواند عامل ایجاد دردهای مزمون باشد و عملکرد یا دامنه حرکتی عضو را محدود کند. در ارتباط با عملکرد اندام فوکانی، عوامل مختلف دیگری مانند، توزیع نابرابر فشار، دردهای

سهم نویسنده‌گان: محمدرضا ایزدی، ارائه ایده و طراحی مطالعه، جمع‌آوری داده و تحلیل آماری داده؛ احمد رضا یوسف پور، ارائه ایده و طراحی مطالعه، جمع‌آوری داده؛ مرتضی ناجی، تفسیر داده و جمع‌آوری داده؛ بهروز جعفری، جمع‌آوری داده و تحلیل آماری داده؛ همه نویسنده‌گان در نگارش اولیه مقاله و بازنگری آن سهیم بودند و همه با تأیید نهایی مقاله حاضر، مسئولیت دقت و صحت مطالب مندرج در آن را می‌پذیرند.

منابع مالی: این مطالعه حاصل یک طرح تحقیقاتی است با حمایت مالی دانشگاه جامع امام حسین (ع) انجام شد.

نمرات FMS و DASH می‌توان چنین استدلال کرد که ناهنجاری‌های قامتی بالاتنه که در نیروهای نظامی ستادی شایع است، فرد را بیشتر در معرض آسیب قرار می‌دهد. به صورت کلی کاهش ثبات تن و کیفیت حرکت ناشی از ناهنجاری‌های قامتی به صورت مستقیم یا به صورت جیرانی سبب کاهش نمرات FMS در افراد خواهد شد که بروز آسیب‌دیدگی را در افراد نظامی می‌افزاید.

تشکر و قدردانی: نویسنده‌گان از تمامی افرادی که در مطالعه حاضر شرکت کردند، کمال تشکر و قدردانی را دارند.

تعارض منافع: بدین‌وسیله نویسنده‌گان مقاله تصریح می‌نمایند که هیچ‌گونه تعارض منافعی در قبال مطالعه حاضر وجود ندارد.

References

1. Riedel S. Biological warfare and bioterrorism: A historical review. *J Baylor Scott White Health.* 2004;17(4):400-06. doi:10.1080/08998280.2004.11928002
2. Barras V, Greub G. History of biological warfare and bioterrorism. *Clin Microbiol Infect.* 2014;20(6):497-502. doi: 10.1111/1469-0691.12706
3. Xue Y, Yu H, Qin G. Towards good governance on dual use biotechnology for global sustainable development. *Sustainability.* 2021;13:14056. doi: 10.3390/su132414056
4. DaSilva EJ. Biological warfare, bioterrorism, biodefense and the biological and toxin weapons convention. *Elect J Biotechnol.* 1999;2(3). doi: 10.2225/vol2-issue3-fulltext-2
5. DiEuliis D. Key national security questions for the future of synthetic biology. *Fletcher Forum World Aff.* 2019;43:127-40. <https://www.jstor.org/stable/45289832>
6. National Research Council. *Biotechnology Research in an Age of Terrorism*; National Academies Press: Washington, DC, USA, pp. 16–17, 2004. doi:10.17226/10827
7. Casadevall A. The future of biological warfare. *Microb Biotechnol.* 2012;5(5):584-87. doi: 10.1111/j.1751-7915.2012.00340.x.
8. Aken JV, Hammond E. Genetic engineering and biological weapons. *EMBO Reports.* 2003;4:S57-S60. <https://doi.org/10.1038%2Fsj.embor.embor860>
9. Black JL 3rd. Genome projects and gene therapy: gateways to next generation biological weapons. *Mill Med.* 2003;168(11):864-71. <https://pubmed.ncbi.nlm.nih.gov/14680038/>
10. Fraser CM. A genomics-based approach to biodefence preparedness. *Nat Rev Gen.* 2004;5:23-33. doi: 10.1038/nrg1245
11. Carrasco-Ramiro F, Peiro-Pastor R, Aguado B. Human genomics projects and precision medicine. *Gene Ther.* 2017;24:551-61. doi:10.1038/gt.2017.77
12. Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K et al. Gene therapy leaves a vicious cycle. *Front Oncol.* 2019;9:297. doi: 10.3389/fonc.2019.00297
13. Pfeifer A, Verma IM. Gene therapy: promises and problems. *Annu Rev Genomics Hum Genet.* 2001;2:177-211. doi: 10.1146/annurev.genom.2.1.177. PMID: 11701648.
14. Ahmar S, Saeed S, Khan MH, Ullah Khan S, Mora-Poblete F, Kamran M et al. A revolution toward gene-editing technology and its application to crop improvement. *Int J Mol Sci.* 2020;21(16):5665. doi: 10.3390/ijms21165665.
15. Li C, Brant E, Budak H, Zhang B. CRISPR/Cas: a nobel prize award-winning precise genome editing technology for gene therapy and crop improvement. *J Zhejiang Univ Sci B.* 2021;22(4):253-84. doi:10.1631/jzus.B2100009
16. Khalil A.M. The genome editing revolution: review. *J Genet Eng Biotechnol.* 2020;18(1):68. doi:10.1186/s43141-020-00078-y
17. Miyaoka Y, Berman JR, Cooper SB, Mayerl SJ, Chan AH, Zhang B et al. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease and cell type on genome editing. *Sci Rep.* 2016;6:23549. doi:10.1038/srep23549
18. Adli M. The CRISPR tool kit for genome editing and beyond. *Nat Commun.* 2018;9(1):1911. doi: 10.1038/s41467-018-04252-2.
19. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. *Sig Trans Targ Ther.* 2020;5:1. doi:10.1038/s41392-019-0089-y
20. Maeder M, Gersbach C. Genome-editing technologies for gene and cell therapy. *Molecular Therapy.* 2016;24(3):430-46. doi: 10.1038/mt.2016.10.
21. Kim H; Kim J. A guide to genome engineering with programmable nucleases. *Nature Reviews Genetics.* 2014;15(5):321-34. doi: 10.1038/nrg3686.

۱۳ ارتباط بین آزمون غربالگری عملکردی- حرکتی با ناهنجاری‌های قامتی و عملکرد اندام فوقانی نظامیان

۲۲. Abbas Raza SH, Hassanin AA, Pant SD, Bing S, Sitohy MZ, Abdelnour SA. et al. Potentials, prospects and applications of genome editing technologies in livestock production. *Saudi J Biol Sci.* 2022;29:1928-35. DOI: 10.1016/j.sjbs.2021.11.037

۲۳. Guha TK, Edgell DR. Application of alternative nucleases in the age of CRISPR/Cas9. *Int J Mol Sci.* 2017;18:2565. doi:10.3390/ijms18122565.

۲۴. Barrangou R, Sontheimer EJ., Marraffini LA. CRISPR: Biology and application. John Wiley & Sons Inc. 2022. 304p. <https://www.wiley.com/en-au/CRISPR%3A+Biology+and+Applications-p-9781683673613>

۲۵. Addgene, CRISPR 101, Synthego, 2017. www.addgene.org.

۲۶. Kaboli S and Babazada H. CRISPR mediated genome engineering and its application in industry. *Curr Issues Mol Biol.* 2018;26:81-92. doi: 10.21775/cimb.026.081

۲۷. Masood U. DNA Fingerprinting and CRISPR cas9 System. *Eur Exp Biol.* 2021;11(5):138. <https://www.primescholars.com/articles/dna-fingerprinting-and-crispr-cas9-system.pdf>

۲۸. Isaacson W. The code breaker: Jennifer Doudna, Gene editing, and the future of the human race. Simon & Schuster Books for Young Readers. 2022. 560p. <https://www.amazon.com/Code-Breaker-Jennifer-Doudna-Editing/dp/1982115858>

۲۹. Carey N. Hacking the code of life: How gene editing will rewrite our futures. Icon Books; 2019. 176p. <https://www.amazon.com/Hacking-Code-Life-editing-rewrite/dp/1785784978>

۳۰. Doudna JA, Sternberg SH. A crack in creation: Gene editing and the unthinkable power to control evolution. Mariner Books. 2017. 304p. <https://www.amazon.com/Crack-Creation-Editing-Unthinkable-Evolution/dp/0544716949>

۳۱. West RM, Gronvall GK. CRISPR cautions: Biosecurity implications of gene editing. *Perspect Biol Med.* 2020;63(1):73-92. doi: 10.1353/pbm.2020.0006. PMID: 32063588.

۳۲. Vogel KM, Ouaghrham-Gormley SB. Anticipating emerging biotechnology threats: A case study of CRISPR. *Politics Life Sci.* 2018;37(2):203-219. doi: 10.1017/pls.2018.21. PMID: 31120699.

۳۳. DiEuliis D and J. Giordano, Gene editing using CRISPR/Cas9: implications for dual-use and biosecurity. *Protein Cell.* 2018;9(3):239-40. doi:10.1007/s13238-017-0493-4

۳۴. Alonso M, Savulescu J. He Jiankui gene-editing experiment and the non-identity problem. *Bioethics.* 2021;00:1-11. DOI:10.1111/bioe.12878

۳۵. Werner E. The coming CRISPR wars: Or why genome editing can be more dangerous than nuclear weapons. Preprint. 2019. doi: 10.13140/RG.2.2.17533.00485

۳۶. DiEuliis D and Giordano J. Why gene editors like CRISPR/Cas may be a game-changer for Neuroweapons. *Health Secur.* 2017;15(3):296-302. DOI:10.1089/hs.2016.0120

۳۷. Cyranoski D. CRISPR gene-editing tested in a person for the first time. *Nature.* 2016;539:479. <https://doi.org/10.1038/nature.2016.20988>

۳۸. Munirah Isa N, Zulkifli NA, Man S. Islamic perspectives on CRISPR/Cas9-mediated human germline gene editing: A preliminary discussion. *Sci Eng Ethics.* 2020;26:309-23. doi:10.1007/s11948-019-00098-z

۳۹. Alsomali N, Hussein G. CRISPR-Cas9 and He Jiankui case: an Islamic bioethics review using Magasid al-Sharia and Qawaid Fiqhiyyah. *Asian Bioethics Rev.* 2021;13:149-65. doi.org/10.1007/s41649-021-00167-1

۴۰. Al-Balas QAE. Dajani R, Al-Delaimy WK. The ethics of gene editing from an islamic perspective: A focus on the recent gene editing of the chinese twins. *Sci Eng Ethics.* 2020;18:51-60. doi.org/10.1007/s11948-020-00205-5