

ORIGINAL ARTICLE**OPEN ACCESS****Gene Editing: Biosecurity Challenges and Risks****Samaneh Fatollahi Arani¹ MSc, Mehdi Zeinoddini¹ * PhD**¹ Department of Biology, Faculty of Chemistry & Chemical Engineering, Malek Ashtar University of Technology, Iran.**ABSTRACT**

AIMS: Gene editing as a molecular knife has provided a powerful tool to edit the genome inside living organisms' bodies. Despite all the benefits, this technology has many biosecurity concerns that have prompted the international community to develop specific implementation guidelines. This study aimed to investigate the risks of gene editing technology from the point of view of biosecurity and to determine its defense strategies.

MATERIALS AND METHODS: This review was conducted in the fall and winter of 2022-23. The study's method was based on the observation and interpretation of the data obtained from relevant scientific articles and books. Scientific books and articles were searched by searching the keywords Germline Gene Editing, CRISPR, Biosecurity, CRISPR War, Biohacking, CRISPR babies, Do It Yourself, Islamic Bioethics in PubMed, Scopus, Researchgate databases and also the Google search engine was searched and checked in English.

FINDINGS: The advent of genome editing technology has created a new paradigm in which the human genome sequence can be precisely manipulated to achieve a therapeutic effect. However, embryo editing and the design of programmed humans (super-humans) are considered one of the challenges and risks of gene editing biosecurity. Also, this technology is mentioned as a dangerous tool for biohacking and bioterrorism in the design of personalized bioweapons and emerging agents.

CONCLUSION: CRISPR-based bioweapons have destroyed the logical and strategic balance of power that has kept the world immune from using weapons of mass destruction. The world is facing a potentially more dangerous technology than nuclear weapons. As a result, establishing appropriate international and ethical laws is necessary to prevent the potential dangers of this technology and to deal with it.

KEYWORDS: CRISPR; Genome; Biosecurity; Weapons; Terrorism; Bioterrorism

How to cite this article:

Fatollahi Arani S, Zeinoddini M. *Gene editing: biosecurity challenges and risks*. J Police Med. 2023;12(1):e9.

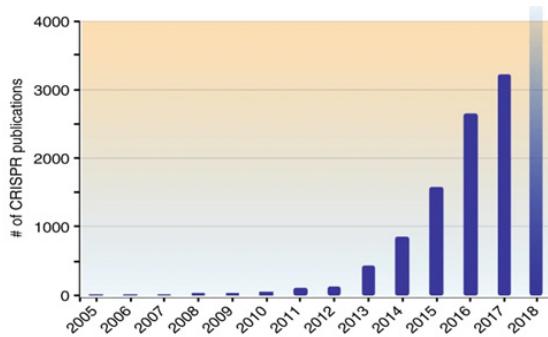
***Correspondence:**

Address: Lavizan, Shahid Shabanlou St., Malek Ashtar University of Technology, Tehran, Iran, Postal Code: 15875-1774
Mail: zeinoddini52@mut.ac.ir

Article History:

Received: 15/01/2023
Accepted: 20/02/2023
ePublished: 06/04/2023

INTRODUCTION and HISTORY of GENE EDITING


After the first presentation of the term biotechnology by Karl Erky, a Hungarian agricultural engineer, perhaps few people imagined this technology would be used in offensive aspects and against human society. At the beginning of the work, biotechnology was presented as a clear and suitable solution for human society to create suitable treatment conditions, healthy nutrition, better life and a hopeful future. However, over time, the dark aspects of this technology in the form of bioterrorist threats were brought up, and this led to the use of the title "Dark Biotechnology" for bioterrorism attacks in the colored names of biotechnology. [1, 2]. In the military developments of the last century, which were rooted in technology, various scientific branches, including modern chemistry and physics, have been the main factor. Current trends indicate that the next evolution will be rooted in biological science. The development of biological technology has facilitated the development of biological weapons and threats, and the third wave of technology in the history of the development of weapons of mass destruction will be biological. The possibility of dual military and civilian use lies in biotechnology. In other words, biotechnology can be helpful and harmful. Based on this, the sciences related to biology, especially genetic engineering and biotechnology, in addition to being able to be used to advance medical and therapeutic sciences, at the same time, these researches can be developed with the cover of medical research in the military field and every day designed and produced newer biological agents. In the first case, we will see progress in human health and society, but in the second case, it will cause bioterrorism attacks and human deaths. Such threats result from new technologies that, in addition to making progress in science and technology, also enable the production of new microorganisms (artificial synthesis) [3-6]. It is necessary to explain that in 2012, an American person published an article entitled "The Future of Biological Threats" in the Journal of Microbial Biotechnology, in which he claims one of the three theories of the extinction of human society, after the possibility of a large-scale nuclear war and a vast meteorite collision to the ground, causing contagious infectious disease [7]. The turning point of developments related to biotechnology was the beginning of the human genome project, which began in 1991, and finally, with the holding of an international conference in the White House (2000), the completion of the human genome project to the global community with the presentation of the main executives of this project (Francis Collins and Craig Venter) and was

announced with the presence of the President of the United States (Clinton). With the completion of the human genome project, complete information about the human genome was provided to human society. With this information, the defective and functional genes were fully identified. Therefore, the sensitivity of individuals and families to microorganisms and dangerous diseases or their resistance was determined [8, 9].

Gene therapy has historically been defined as adding new genes to human cells to treat genetic diseases. However, the recent advent of genome editing technologies has created a new paradigm in which the human genome sequence can be precisely manipulated to achieve a therapeutic effect; this involves correcting disease-causing mutations, adding beneficial genes to specific locations in the genome, and removing harmful genes or genome sequences. Understanding the genetic basis of hereditary disease led to the initial concept of gene therapy, in which suitable foreign DNA replaces defective DNA in people suffering from genetic defects. More than 40 years of research in the field of gene therapy process shows that the simple idea of gene replacement is much more complicated to perform safely and effectively [10, 11]. Many of these challenges have focused on fundamental limitations in precisely controlling how genetic material is transferred into cells. Nevertheless, there are technologies for adding foreign genes that have made significant progress in this field. Potential clinical results have now been demonstrated in a wide range of strategies and medical indications, but several challenges remain. Integrating therapeutic transfer genes into the genome to maintain stability in the cell may affect gene expression and its unwanted effects on nearby genes. In addition, some genes need to be more significant to transfer by vectors quickly. Finally, foreign genes cannot always be introduced directly into dominant mutations or defective genetic material. To solve the problems related to these basic limitations, conventional methods have emerged to make precise and targeted changes in the genome [12, 13]. In this regard, genome editing is a practical, versatile, and preferred tool for functional gene research, gene therapies, and precise breeding of crops and domestic and attractive animals for practical and industrial research [14, 15].

Genome editing research started in the 1970s. The first major step in gene editing was achieved when researchers showed that when a piece of DNA enters a cell, it can enter the host genome through homologous recombination and implement the desired changes in the cell. This development came when it was found that in eukaryotic cells,

more precise gene targeting mechanisms could be achieved by inducing a double-strand break in a specific genomic target. In addition, the scientists found that if a synthetic DNA restriction enzyme was introduced into the cell, it could recognize the DNA at specific locations and cut it into double strands, subsequently repaired by HDR (Homology-Directed Repair) and NHEJ (Non-Homologous End-Joining) mechanisms resulting in homology-based insertions, deletions, or repairs [16, 17]. Among the different methods and mechanisms of gene editing, CRISPR-Cas9 technology (the fourth generation of gene editing) has surpassed other methods. Two female scientists introduced this technology to the scientific community in 2012, making them proud to receive the Nobel Prize in Chemistry in 2020. It is necessary to explain that some sources have announced the beginning of the first research related to gene editing in 1987, which indicates the existence of initial ideas in this regard. However, its expansion has been observed since 2000. CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeat, which has been mentioned in various sources. The CRISPR-Cas9 system was developed after other gene editing systems called meganucleases (a class of endodeoxyribonucleases), ZFNs (Zinc-Finger Nucleases) and TALENs (Transcription Activator-Like Effector Nucleases) due to its unique features, it attracted the attention of researchers, so the publication of articles and inventions in this field shows great growth (Figure 1). It should be noted that most of the research in this regard is dedicated to cancer, AIDS, and hepatitis [18, 19].

Figure 1) The amount of published articles related to gene editing from 2005 to 2018

MECHANISMS of GENE EDITING

Gene editing can change an organism's DNA sequence, essentially engineering its genetic makeup. This process is carried out using enzymes, specifically nucleases that are engineered to target a specific DNA sequence. They introduce cuts into the DNA strands, allowing the removal of existing DNA and inserting replacement DNA. In other words, the gene editing tools developed today

Fatollahi Arani & Zeinoddini

can create double-stranded breaks in the genome, and by repairing these breaks, the process of gene editing can be developed. There are four methods of gene editing: gene destruction or mutation, gene deletion, gene modification and gene insertion. Based on this, researchers use different tools capable of creating double-strand breaks in DNA to create various changes in the genome. Specific nucleases for gene editing include engineered target sequences and restriction enzymes. After the programmed nuclease cleaves the target gene to introduce double-strand breaks (DSBs), molecular repair proceeds via two fundamentally different mechanisms: homology-directed repair (HDR), in which broken DNA is repaired using a homologous DNA sequence as a template, and non-homologous end joining (NHEJ), in which broken ends in a non-homologous DNA sequence are rejoined. The HDR repair mechanism, which allows the insertion of a template DNA to correct or insert a particular sequence at the site of a DNA break, facilitates accurate copying of the template to a specific location in the genome and repairs the homologous DNA break.

In contrast, the NHEJ repair mechanism leads to small insertions or deletions (indels) at the desired site or breaks [20, 21]. As a result, this mechanism can be an efficient way for defective genes to function. As mentioned, today, four different types of nucleases that bind to DNA are used in gene editing: Meganucleases, Zinc-Finger Nucleases (ZFN), Transcription Activator-Like Effector Nucleases (TALEN) and Cas9 Nuclease, which is the most recently discovered type [22, 23]. **Table 1** compares these four nucleases regarding features and mechanism of action. Their performance is also shown in **Figure 2**.

ADVANTAGES of GENE EDITING TECHNOLOGY

Gene editing is essential and valuable in various industrial and research fields. In the continuation of the recent exciting developments in the ease of use, features and characteristics of gene editing technology and their application in different fields are examined [24-26].

Human Health: gene editing technology creates a fundamental change in gene therapy. It can treat a wide range of diseases (such as diabetes, cancer, cystic fibrosis and sickle cell anaemia) that have not been possible to treat with this technology. All cancers result from numerous diverse mutations that lead to the excessive growth and proliferation of cells and the emergence of malignant phenotypes. The site of the event and the area disrupted by these mutations can be classified into four categories: oncogenes, tumor suppressors, epigenetic factors and chemotherapy

Gene editing: biosecurity challenges and risks

Table 1) Comparison of different genome editing methods

Nuclease	Mechanism of action	Meganuclease	ZFNs	TALEN	CRISPR/Cas9
DNA system		Protein-DNA	Protein-DNA	Protein-DNA	RNA-DNA
Synonymous with targeting		12-45 games	18-36 games	30-40 games	22 games
Price		Much	Much	medium	Low
Off-target events		Low	Comparable	Comparable	Comparable
release therapy		simple	simple	complicated	medium
Multiple targeting		complicated	complicated	complicated	simple
specificity (off target)		Very specific	Relatively non-specific	exclusive	Relatively non-specific
Requires dimerization		no	Yes	Yes	noVector
noVector packaging		simple	complicated	complicated	medium

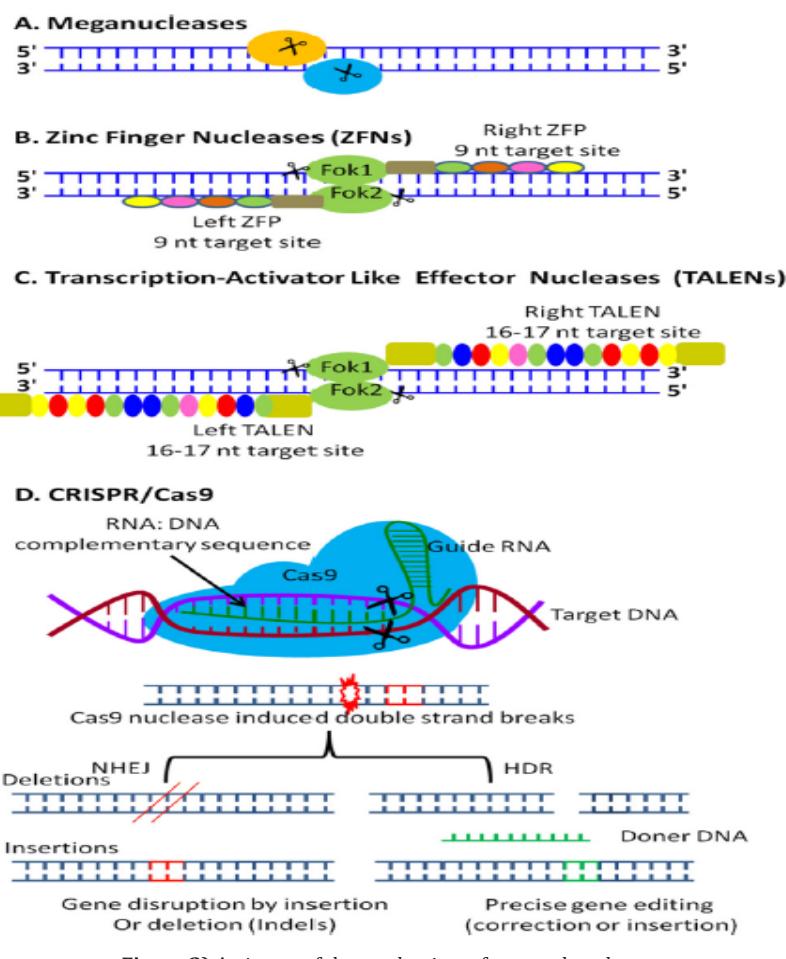


Figure 2) A picture of the mechanism of targeted nucleases for gene editing. (A) meganuclease, (B) ZFNs, (C) TALENs, (D) gene editing process using CRISPR/Cas9 technology

resistance genes. CRISPR-Cas9 technology, as a powerful tool with high characteristics, can correct these mutations and treat cancers derived from them. Since oncogenic changes in several cancers lead to increased cell proliferation and malignancy, oncogenes such as tyrosine kinase receptor Erb2 can be directly targeted by CRISPR-Cas9 technology. From a complementary point of view, the CRISPR-Cas9 method can create cancer-causing mutations in human cell lines and animal

models. In this regard, lung cancer cell lines, acute myeloid leukaemia, and liver and pancreatic cancer have been developed. Crisper-Cas9 technology can also be used in animal models suffering from various diseases (from hereditary diseases to cancers). It has created heritable changes by CRISPR-Cas9 technology and direct targeting of one or more bilateral in the animal egg. Among the transgenic animal models, most of the tests are based on mouse models. However, researchers

have succeeded in making models of non-human primates by targeting multiple genes. The advantage of these models is in the reconstruction and the possibility of investigating complex human diseases such as neurodegenerative diseases. However, mouse models have more advantages than others, such as the cost of working with them, and in addition, mouse models are very suitable for extensive mutagenesis studies *in vivo* [25].

New Materials: By using these technologies, it is possible to achieve the synthesis of new materials that can be used in various applications, such as the release of oral drugs or the production of biosensors.

Drug Development: Engineered cells can be produced using these technologies that produce drug production optimally and efficiently. In addition, it significantly reduces the cost of the drug and provides easy access to the drug.

Research Applications: With technologies such as gene editing, new animals and cell models can be designed and produced, which will help us learn more about diseases and test new drugs and vaccines on those cell and animal models.

Agriculture: By using gene editing tools, it is possible to modify the seeds of agricultural products without harming other genes. Based on this, it is possible to obtain agricultural products that can be resistant to infections and environmental damage, and as a result, food security can be improved.

Bioenergy: With the help of tools such as gene editing, it is possible to produce biofuels (green) biofuels. Therefore, it is possible to increase and optimize the production of biofuels such as ethanol in algae cells or seeds by modifying the metabolic and biochemical pathways of the relevant cells [24-26].

Criminology: By combining CRISPR technology with DNA fingerprinting technology, new methods can be developed in criminal identity detection and criminology. DNA (genetic) fingerprinting is a method that was first presented to the scientific community and criminology experts in 1985 by *Alec Jeffrey* using repeatable variable sequences of 15 to 100 genes called VNTR (Variable Number of Tandem Repeat). Genetic fingerprinting allows specialists to determine the differences and similarities between people based on specific DNA samples. Based on this, people's communication can be observed and identified at crime scenes. According to each person's VNTR sequence, gRNA (gene editing diagnostic tool) can be designed. Based on this, a fluorescently labelled DNA sample from the victim (in a crime) can be prepared and checked for matching with the VNTR sequence of the victim. CRISPR can also be designed to scan DNA or find a specific VNTR. In the CRISPR DNA scan, if CRISPR fails to target the

VNTR, it will not bind to it, meaning no fluorescent dye will appear under UV light. However, if scanning is performed and the target is identified and bound, a fluorescence signal is generated, meaning the VNTR can be present in the DNA [27].

RISKS OF GENE EDITING TECHNOLOGY

In today's world, the increasing importance of the knowledge of biology as a basic science is undeniable. As a result of deep studies and many investigations, the boundaries of biology and the findings related to the knowledge of nature have been expanded tremendously. The volume of resulting information and its increasing growth cannot be compared to any era. Today, biotechnology, as a branch of biological applications, has progressed more than at any other time. Due to its applications in health, hygiene and the economy, its importance and value have increased daily. These important advances in biotechnology are mainly due to advances in instrumentation and their application in developing the frontiers of biology. The most remarkable developments of this knowledge and technology have been achieved in ecology, genetics, microbiology, molecular biology, biochemistry, cell culture technologies and process engineering. The emergence of the new sciences of genomics, proteomics, bioinformatics, systems biology, synthetic biology and gene editing has also resulted from these developments. On the other hand, today, biology is exposed to hostile abuse as much as chemistry in World War I and physics in World War II. The enormous force of international trade that underpins this basic science has driven it to innovations that, along with its marketable medical value, may also be used for destructive purposes. If a country exploits science and technology in biological fields, it can reveal one of the most serious problems of humanity that it has not faced so far. If the production of a new generation of bioweapons is pursued with force, especially if used to control and conquer humans, it can cause dangerous technological competition. If the force of biotechnology is not politically contained, it will be able to invent scientific methods that will change the way war is conducted and increase the means of civilian sacrifice. It should be noted that the discussions discussed below do not in any way attempt to magnify the possible risks of biotechnology; because such a possibility exists with any other technology, both those that are widely used in societies today (such as IT and telecommunications) and those that will emerge in the future in the field of health (such as gene editing, artificial synthesis, and human creation). Such studies can also show the potential

6 Gene editing: biosecurity challenges and risks

capabilities of biotechnology in promoting new defense capabilities; so that the guardians of the country's biological defense pay special attention to the potential of this technology for defense purposes (such as providing new treatment trends and new diagnostic methods in the direction of biological defense).

Among the various technologies proposed in the field of life and health today, gene editing technology can cause irreparable risks to the biological security of societies. Now genome editing is much easier, faster, cheaper and more efficient than ever before (just like editing an article on a computer) and helps researchers in various scientific fields. The fourth generation of gene editing, CRISPR-Cas9, can handle new editing programs, from viruses and bacteria to animals, plants and humans. However, as this technology develops, how should it be controlled? While expressing concern about the negative consequences of the development of gene editing technology, Professor Jennifer Doudna, the discoverer of Cas9 nuclease and 2020 Nobel Prize winner, has received \$3.3 million in funding from the US Defense Advanced Research Projects Agency (DARPA) to investigate anti-CRISPR solutions. The red line of this technology is the manipulation of the human embryo [28-30]. It should be remembered that CRISPR-based genome editing technology has caused a tremendous revolution in medical sciences and other scientific fields. This technology, developed for about a decade, has fascinated scientists. In a way that it allows a person with less than a high school education to edit the genome of any animal or plant. High school students are now using this technology to perform experiments that were previously only dreams for most scientists. Much of the scientists' research has focused on the tremendous potential of using genome editing to treat cancer. This work is based on the familiarity and understanding of the new model of the cancer network, which examines how cancer cells are controlled. New gene-based approaches for cancer treatment have suggested using genome editing as an effective tool. Unfortunately, while we can cure cancer using CRISPR, we can also create cancer using the same technology.

Based on this, researchers will have been able to design cancer models on the computer. The possibility of artificially creating cancerous tumors will also be provided when they can treat cancer patients with CRISPR. Therefore, the cancer bomb can be implemented using CRISPR. As a result, today, CRISPR technology is proposed as a new biological weapon, and scientists warn about its biosecurity consequences [31, 32]. The very simple

application of CRISPR makes this technology potentially very dangerous. This technology has features that make it an ideal military and bioterrorist weapon and has been favored by biohackers. Mr. Josiah Zayner, one of the pioneers of biohacking and the founder of Odin Company since 2006, offers online training and simple gene therapy kits based on CRISPR technology to his customers around the world, who, in addition to the simple training of gene editing, can design and produce genetically engineered products (such as the green tree frog with the high growth rate) [33]. Based on this, it seems that in the not-too-distant future, we will see the design and production of biological weapons (mass destruction) based on CRISPR, which will be even more dangerous than a nuclear bomb. According to some scientists, nuclear weapons are obsolete because they are complicated to maintain. From a military point of view, CRISPR weapons are considered far superior to nuclear weapons and will probably replace them. These CRISPR-based editing features make it very easy to weaponize. It is possible to create an engineered virus that edits CRISPR in a completely controlled manner so that only humans whose genomes have specific characteristics are killed or disabled by the virus. The importance of CRISPR biosecurity is so high that scientists have warned about the design and production of programmed humans and editing on human embryos and are drafting national and international laws in this regard. It is necessary to explain that the Chinese scientist, He Jiankui, on October 8, 2018, officially announced the birth of Chinese girl twins with Crisper technology. In these twins, who were born from a father with AIDS and a healthy mother, the CCR5 gene, which is related to the entry of HIV into cells, has been edited and deleted. This scientific activity, carried out illegally and confidentially, shocked the scientists in this field and led to a fine and three years of imprisonment for this Chinese scientist. Jiankui had to present the result of his research at the Second International Conference on Human Genome Editing held in Hong Kong in 2018, which was widely criticized by the scientific community, even Chinese scientists [34].

The question raised today is why the Crisper weapon can be so dangerous. The answer to this question can be found in the following:

- 1- CRISPR-Cas based editing can be precisely designed to edit a specific part of the target genome.
- 2- Viruses can deliver CRISPR-Cas-based editing to a given host.
- 3- Mathematical rules can fully control edits. In other words, target genome editing is applied only if certain precise conditions are present in the

target person's genome. For example, two people can be infected by a CRISPR-based editing virus, but only the person with the prerequisites will have their genome edited. In addition to these, unfortunately, many more characteristics of a potential CRISPR-based weapon make them ideal weapons for future precision and targeted mass destruction. For example, its effects can remain hidden for months, and CRISPR bombs do not have the long-term toxic effects of nuclear weapons. Also, it can be implemented for most organisms and programmed as an effective weapon for the nervous system. As a result, CRISPR as a weapon of mass destruction for genocide is significant and considered [34, 35]. Also, from a biosecurity perspective, CRISPR technology could potentially create and induce precise cancers that would kill people within months. Unfortunately, it is much easier to cause cancer than to cure it with genome editing. The main appeal of a deadly CRISPR-engineered virus as a bioterrorism weapon is the precision in mass incapacitation and destruction of people. Unfortunately, these topics are unrelated to science fiction and fantasy horror movies, but this is a real danger in humanity's present and future. Notably, there are probably labs worldwide developing CRISPR technology to develop the next generation of bioweapons. As mentioned, Crisper also has genocidal capabilities. Given that a particular generation has unique genetic traits that distinguish it from others, all members are potential targets for a CRISPR-engineered killer virus. For example, if the prerequisite is that one must have brown eyes, then anyone with brown eyes is a potential target for a deadly CRISPR-engineered virus. Using the Crisper weapon, you can create diseases that cause the target person to die slowly or quickly. Some scientists who have provided significant analysis about the possible possibilities have raised various dangerous issues. Some of these reports indicate major future concerns that could result from secret research programs. Especially these reports have not ruled out the possibility of hidden viruses that can secretly enter the genome of a population and later be activated by a signal. Another example is "programmed cell death". This ability to insert a genome into the genetic reserve of a specific population and attack it at will, or to create a completely new pathogenic agent, indicates a change in capabilities [35, 36].

Gene Editing Defense Strategies

On June 29, 2018, in Newsweek magazine, the media announced and published the discussion of using gene editing technology on human embryos to eliminate genetic diseases. However, some

Fatollahi Arani & Zeinoddini

scientists and pioneers of this technology (such as Professor Doudna) raise ethical considerations as a serious discussion. Since 2015, China has started extensive research on human embryos under the leadership of Professor Lu You, an oncologist at Sichuan University in Chengdu, and is still developing this technology on human embryos; in a way that on October 28, 2017, a group led by him injected the modified cells into a patient with aggressive lung cancer as part of a clinical trial at the West China Hospital [37]. However, according to most scientists, the red line of gene editing technology is the genetic manipulation of human embryos. However, today, some scientists secretly use gene editing technology to research and develop human embryos to design and create disease-free humans with special capabilities. These designed children have high intelligence, creative mind, five senses with great power and are resistant to various diseases. Also, some have called this technology the engine of creation because it gives the scientist a god-like power (based on his beliefs) to create and improve future humans (super-humanity). On the other hand, unlike the Schilling Act, CRISPR-based bioweapons have international strategic implications. According to Thomas Schelling's Game Theory, a balanced international strategy is observed in the nuclear age. If one side increases or decreases its nuclear weapons capabilities to maintain balance, the other side must follow suit. Based on this, each side knows what weapons the other side has, and both sides, knowing this (based on open inspection of nuclear facilities), observe a balance in this regard. However, in the era of genome editing technology, due to the ease of making CRISPR-based biological weapons in small laboratories that are impossible to observe and identify, the awareness of the ability and capacity to design and manufacture biological weapons on the other side has failed and as a result, the strategy based on inspection and mutual destruction of such weapons of mass destruction also fails. Therefore, CRISPR-based bioweapons represent a fundamental change in Schelling's Law. A balanced, no-win, bargaining, nonzero-sum Schilling game approaches the classical zero-sum game, in a way that the side that attacks first may win the entire game. As a result, according to Schelling's argument, this international situation will be very unstable, fragile and dangerous [35]. Based on this, how can the defense strategy to deal with the threats resulting from such technologies and biological security be? In other words, how do we defend ourselves against biological weapons caused by CRISPR? To answer these questions, it is important to pay attention to the following:

8 Gene editing: biosecurity challenges and risks

- 1- The attention and awareness of public opinion and political leaders should be increased about the dangers of CRISPR-based genome editing.
- 2- Considering the actual and potential risks of CRISPR-based genome editing in bioterrorist attacks, defense strategies should be quickly developed to deal with such possible attacks.
- 3- Any CRISPR-based editing can be reversed. In other words, a network mutation that causes cancer can be reversed to stop cancer. When we know how to stop cancer, we will know how to cause cancer. Alternatively, any gene essential for life can be disabled by a reverse edit. This requires a coherent defense-research initiative.
- 4- It is necessary to adopt coherent international laws (in line with the Convention on the Prohibition of the Development, Production and Stockpiling of Biological Weapons) to examine the risks of this very dangerous technology (in order to confront and not prevent it).
- 5- A new international bioethics committee is needed to deal with risk groups in this regard.

Conclusion

Gene editing technology has shown the scientific community a new window and solution through which appropriate treatment methods can be adopted to deal with most diseases. Therefore, genome editing offers great opportunities in biology, biotechnology and medical sciences, including preventing and treating diseases and producing good food. On the other hand, CRISPR-based bioweapons destroy the logical and strategic balance of power that has kept the world free of catastrophic wars. The world is facing a potentially more dangerous technology than nuclear weapons because of its ease of development and precision of use. Precise targeting of individuals with a deadly CRISPR-based virus means that, as in nuclear war, there is no longer a barrier to mutually assured destruction. Instead, we are faced with the possibility of a precise and targeted mass genocide. On the other hand, after the birth of the Chinese gene-edited twins, in terms of Islamic jurisprudence and ethics, there have been discussions about the possibility of using CRISPR technology to develop embryonic research and human genome editing. Considering that embryonic gene editing may lead to hereditary changes in the human genome, whether this practice should be permissible requires a deep and detailed discussion from different perspectives. Islam's views on the concerns raised about human genome editing consider the moral principles important in Islam and declare that it should be taken into account when evaluating the permissibility of gene editing of the human

reproductive line through CRISPR. As discussed in this article, human embryo editing research for medical purposes is legal under certain conditions and is used to treat diseases, but until the safety and effectiveness issues of this technology are resolved, it should not be applied to humans. Strong and strict ethical guidelines are necessary to preserve human dignity and prevent the misuse of technology, and religious principles of preserving human life, descent and dignity and preventing possible harm are among the important principles in evaluating the permissibility of human embryo editing through CRISPR from an Islamic point of view. Therefore, it can be concluded that human gene editing by CRISPR is considered halal in Islam if it has the following conditions:

- A- To be used only for medical purposes, especially for preventing or treating diseases. This kind of change is not considered a manipulation of God's creation.
- B- It is allowed only after solving the safety and efficiency problems, and the technology used should not cause more harm to the parents, the resulting child, the society and the future generation.
- C- Establish strict regulations to ensure respect for the people involved, prevent early use and abuse of technology, and seriously prevent unwanted genetic changes in humans [38-40].

Clinical & Practical Tips in POLICE MEDICINE: Considering the emergence of promising technologies such as genome editing, in addition to using the opportunities obtained from this technology, especially in the field of life and health and diagnosis and treatment of incurable diseases, it is necessary to pay special attention to this technology from the point of view of biosecurity. The creation of new organisms, biohacking and the creation of programmed humans are among the future biosecurity risks of this technology, and the Deputy Health and Medical Services of General Staff of the Armed Forces must draw specific plans and strategies in this regard in cooperation with academic centers.

Acknowledgements: This study was carried out in the Research Institute of Biological Sciences and Technology of the Malek Ashtar University of Technology, and the efforts of the officials of this university are gratefully acknowledged.

Conflict of interest: The article's authors stated that the present study has no conflict of interest.

Authors' Contribution: Samane Fethollahi (data collection); Dr Mehdi Zein al-Dini (presenting the idea and design of the study, data collection, data analysis). All the authors participated in the initial writing of the article and its revision, and all accept the responsibility for the accuracy and

correctness of the article's contents with the final approval of this article.

Financial Sources: The present study was carried out with the financial support of the Biological Sciences Department of the Academic Complex of Chemistry and Chemical Engineering of Malek Ashtar University of Technology, in line with the observation of emerging technologies, and was a part of the research project number "19730180208".

نشریه طب انتظامی

۶ دسترسی آزاد

مقاله اصیل

ویرایش ژنی: چالش‌ها و مخاطرات امنیت زیستی

سامانه فتح‌اللهی ارانی^۱ MSc^۱, مهدی زین‌الدینی^۱ PhD^{*۱}

^۱ گروه علوم زیستی، مجتمع دانشگاهی شیمی و مهندسی شیمی، دانشگاه صنعتی مالک اشتر، ایران.

چکیده

اهداف: ویرایش ژنی به عنوان چاقوی مولکولی، ابزاری قدرتمند برای ویرایش ژنوم در درون بدن موجودات زنده فراهم نموده است. با وجود تمام مزایا، این فناوری نگرانی‌های زیادی را نیز از نظر امنیت زیستی به همراه دارد که جامعه جهانی را به فکر تهیه دستورالعمل‌های اجرایی خاص کرده است. هدف از این مطالعه، بررسی مخاطرات فناوری ویرایش ژنی از منظر امنیت زیستی و تعیین راهکارهای پدافندی آن بود.

مواد و روش‌ها: این مطالعه مروری در پاییز و زمستان ۱۴۰۱ انجام شد. روش انجام مطالعه براساس رصد و تفسیر داده‌های حاصل از مقالات و کتب علمی مربوطه بود. کتب و مقالات علمی با جستجوی کلیدواژه‌های Germline Gene Editing, CRISPR, Biosecurity, CRISPR babies, Do It Yourself, Islamic Bioethics, CRISPR War, Biohacking, PubMed, Scopus, Researchgate و همچنین موتور جستجوی Google به زبان انگلیسی جستجو و بررسی شدند.

یافته‌ها: ظهور فناوری ویرایش ژنوم، پارادایمی جدیدی را ایجاد کرده است که در آن توالی ژنوم انسان می‌تواند دقیقاً برای دستیابی به یک اثر درمانی دستکاری شود. با این حال، ویرایش جنینی و طراحی انسان‌های برنامه‌ریزی شده (ابر-انسان) به عنوان یکی از چالش‌ها و مخاطرات امنیت زیستی ویرایش ژنی مطرح است. همچنین از این فناوری به عنوان ابزار خطرناکی برای هک زیستی و بیوتروریسم در طراحی سلاح‌های زیستی شخصی‌سازی شده و عوامل نوپدید نام بده می‌شود.

نتیجه‌گیری: سلاح‌های زیستی مبتنی بر کریسپر توانمندی و استراتژیک قدرت که جهان را از بکارگیری تسلیحات کشتار جمعی، مصون نگه داشته است را از بین برده و جهان با فناوری بالقوه خطرناکتر از سلاح‌های هسته‌ای روبه‌رو است. درنتیجه نیاز به قوانین بین‌المللی و اخلاقی مناسب جهت جلوگیری از خطرات بالقوه این فناوری و مقابله با آن ضروری است.

کلیدواژه‌ها: کریسپر، ژنوم، امنیت زیستی، سلاح، تروریسم، تروریسم زیستی

تاریخچه مقاله:

دریافت: ۱۴۰۱/۱۰/۱۵
پذیرش: ۱۴۰۱/۱۲/۰۱
انتشار: ۱۴۰۲/۰۱/۱۷

نویسنده مسئول*:

آدرس پستی: خیابان شهید شعبانلو، دانشگاه صنعتی
مالک اشتر، تهران، ایران، کد پستی: ۱۵۸۷۵-۱۷۷۴
پست الکترونیکی: zeinoddini52@mut.ac.ir

نحوه استناد به مقاله:

Fatollahi Arani S, Zeinoddini M. *Gene editing: biosecurity challenges and risks*. J Police Med. 2023;12(1):e9.

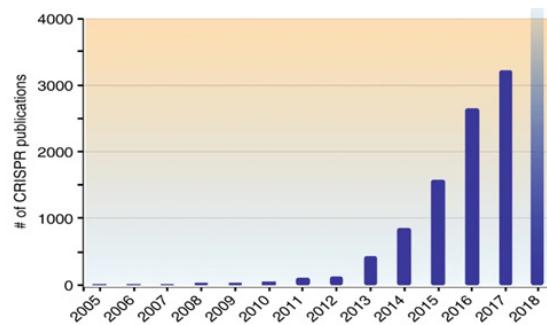
اتمام پروژه ژنوم انسانی، اطلاعات کاملی از ژنوم انسان به جامعه بشری ارائه داده شد که در این اطلاعات، ژن‌های معیوب و مفید به طور کامل مشخص و معین گردیدند. لذا حساسیت افراد و اقوام به میکروارگانیسم‌ها و بیماری‌های خطرناک یا مقاومت آها مشخص شد [۸، ۹].

ژن درمانی به لحاظ تاریخی به عنوان افزودن ژن‌های جدید به سلول‌های انسانی به منظور درمان بیماری‌های ژنتیکی، تعریف شده است. اما ظهور اخیر فناوری‌های ویرایش ژنوم، پارادایمی جدیدی را ایجاد کرده است که در آن توالی ژنوم انسان می‌تواند دقیقاً برای دستیابی به یک اثر درمانی دستکاری شود؛ این مسئله شامل اصلاح جهش‌هایی است که باعث بیماری، اضافه کردن ژن‌های مفید به مکان‌های خاص در ژنوم و حذف ژن‌های مضر یا توالی ژنوم است. لازم به توضیح است که فهم پایه ژنتیکی بیماری ارثی منجر به مفهوم اولیه ژن درمانی شد که در آن DNA خارجی مناسب برای جایگزینی DNA معیوب در افرادی که از نقص ژنتیکی رنج می‌برند، استفاده می‌شود. بیش از ۴۰ سال تحقیق در زمینه فرآیند ژن درمانی ایده ساده‌ای از جایگزینی ژن را نشان می‌دهد که انجام ایمن و مؤثر آن بسیار پیچیده‌تر از حد تصور است [۱۰، ۱۱]. بسیاری از این چالش‌ها بر محدودیت‌های اساسی در توانایی کنترل دقیق نحوه انتقال مواد ژنتیکی به سلول‌ها تمرکز داشته‌اند. با این وجود، فناوری‌هایی برای افزودن ژن‌های خارجی وجود دارند که باعث پیشرفت قابل ملاحظه‌ای در این زمینه شده‌اند و اکنون نتایج کلینیکی بالقوه در طیف وسیعی از استراتژی‌ها و عالیم پزشکی نشان داده شده است ولی هنوز چالش‌های متعددی وجود دارد. ادغام ژن‌های انتقالی جهت درمان درون ژنوم برای حفظ پایداری در سلول ممکن است بر روی بیان ژن و اثرات ناخواسته آن بر ژن‌های مجاور تأثیر بگذارد. علاوه بر این، برخی از ژن‌ها بسیار بزرگ هستند که به راحتی توسط وکتورها قابل انتقال نیستند. در نهایت ژن‌های خارجی همیشه نمی‌توانند مستقیماً وارد بخش جهش‌های غالب یا مواد ژنتیکی معیوب شوند. برای حل مشکلات مربوط به این محدودیت‌های اساسی روش‌های متعارفی برای ایجاد تغییرات دقیق و هدفمند در ژنوم ظهور پیدا کرده است [۱۲، ۱۳]. در این راستا، ویرایش ژنوم یک ابزار مؤثر، همه‌کاره و ارجح برای تحقیقات عملکردی ژن، درمان‌های ژنی و اصلاح دقیق محصولات کشاورزی و حیوانات اهلی و رؤیایی جذاب به منظور انجام تحقیقات کاربردی و صنعتی است [۱۴، ۱۵].

تحقیقات در زمینه ویرایش ژنوم از دهه ۱۹۷۰ شروع شده است و اولین گام مهم در ویرایش ژن زمانی به دست آمد که محققان نشان دادند وقتی بخشی از DNA وارد سلول می‌شود، می‌تواند از طریق نوترکیبی همولوگ وارد ژنوم میزبان شود و تغییرات مورد نظر را در سلول اجرا کند. پیشرفت در این زمینه زمانی حاصل شد

مقدمه و تاریخچه ویرایش ژنی

پس از ارائه نخستین بار واژه فناوری زیستی توسط *Karl Erky*، مهندس کشاورز مجارستانی، شاید کمتر کسی تصور می‌کرد از این فناوری در جنبه‌های آفندی و علیه جامعه بشری نیز استفاده گردد. در ابتدای کار فناوری زیستی به عنوان یک دریچه روش و راهکار مناسب برای جامعه بشری در راستای ایجاد شرایط درمانی مناسب، تغذیه سالم، زندگی بهتر و آینده‌ای امیدوارکننده‌تر، مطرح و ارائه شده بود. ولی به مرور جنبه‌های سیاه این فناوری در قالب تهدیدات بیوتوریسمی، مطرح گردید و سبب شد در نام‌گذاری‌های رنگی زیست فناوری، از عنوان فناوری زیستی سیاه و تاریک (Biotechnology Dark) برای حملات بیوتوریسمی استفاده کنند [۱، ۲]. در تحولات نظامی قرن گذشته که ریشه در فناوری داشتند، شاخه‌های مختلف علمی از جمله شیمی و فیزیک نوین عامل اصلی بوده‌اند. روندهای کنونی حاکی از آن است که تحول بعدی، ریشه در علم زیست‌شناسی خواهد داشت. توسعه فناوری زیستی تکامل سلاح‌ها و تهدیدات زیستی را تسهیل نموده و سومین موج بزرگ فناوری در تاریخ گسترش جنگ‌افزارهای کشتار جمعی، زیستی خواهد بود. در سرشت فناوری زیستی امکان استفاده دوگانه نظامی و غیرنظامی نهفته است. به تعبیر دیگر، فناوری زیستی تیغ دولبه‌ای است که هم می‌تواند مفید و هم مضر باشد. بر این اساس، علوم مرتبط با زیست‌شناسی به خصوص مهندسی ژنتیک و فناوری زیستی، همانند چاقوی دولبه، علاوه بر اینکه می‌توان جهت پیشبرد علوم پزشکی و درمانی از آن استفاده کرد، هم‌زمان می‌توان در پوشش تحقیقات پزشکی، در حوزه نظامی نیز این تحقیقات را توسعه داده و هر روزه عوامل زیستی جدیدتری را طراحی و تولید نمود. در حالت اول شاهد پیشرفت در سلامت انسان‌ها و جامعه بشری خواهیم بود ولی در مورد دوم سبب حملات بیوتوریسمی و مرگ انسان‌ها می‌شود. این‌گونه تهدیدات حاصل فناوری‌های نوینی است که علاوه بر اینکه باعث پیشرفت در حوزه‌های علوم و فناوری می‌شود، امکان تولید میکروارگانیسم‌های جدید (سنتز مصنوعی) را نیز می‌سازد [۳-۶]. لازم به توضیح است که یک فرد آمریکایی در سال ۲۰۱۲ مقاله‌ای *Microbial Biotechnology* را با عنوان آینده تهدیدات زیستی، در مجله *Biotechnology* به چاپ می‌رساند که در آن مدعی می‌شود یکی از سه نظریه انقراض جامعه بشریت، پس از احتمال جنگ اتمی گستردگی و برخورد شهاب سنگ عظیم به زمین، ایجاد بیماری عفونی همگیر است [۷]. نقطه عطف تحولات مرتبط با فناوری زیستی، شروع پروژه ژنوم انسانی بود که از سال ۱۹۹۱ آغاز گردید و در نهایت با برگزاری کنفرانسی بین‌المللی در کاخ سفید (سال ۲۰۰۰)، اتمام پروژه ژنوم انسانی به جامع جهانی با ارائه مجریان اصلی این پروژه (Craig Venter و Collins Francis) و با حضور رئیس جمهور وقت آمریکا (Clinton)، اعلام گردید. با تکمیل و

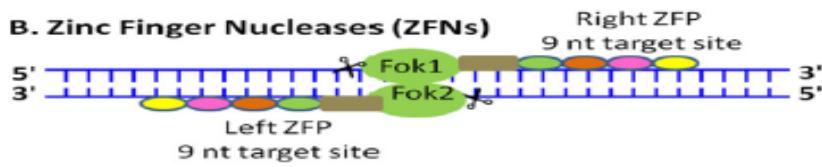
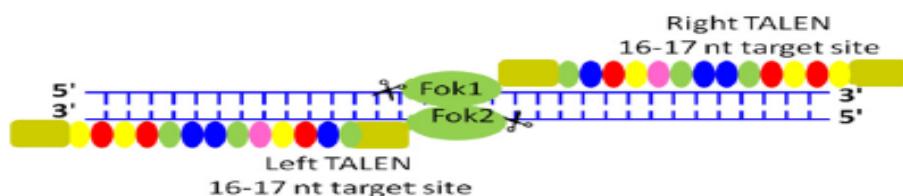
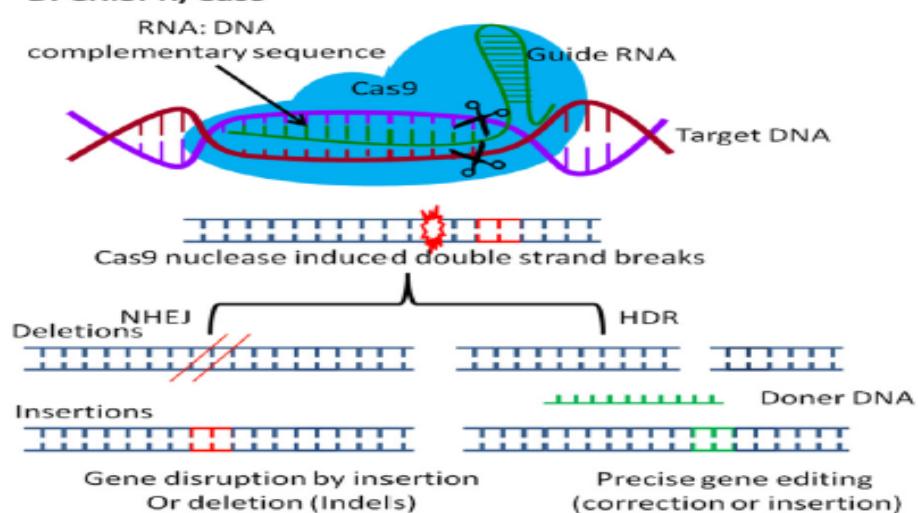

به ویژه نوکلئازهایی که برای هدف قرار دادن یک توالی DNA خاص مهندسی شده‌اند، انجام می‌شود، جایی که برش‌هایی را به رشته‌های DNA وارد می‌کنند و امکان حذف DNA موجود و درج DNA جایگزین را فراهم می‌سازد. به بیان دیگر، ابزارهای ویرایش ژنی که امروزه توسعه یافته‌اند، می‌توانند شکستگی‌های دو رشته‌ای را در ژنوم ایجاد کنند که با ترمیم این شکست‌ها می‌توان روند ویرایش ژنی را توسعه داد. چهار روش برای ویرایش ژن وجود دارد: تحریب یا جهش ژنی، حذف ژن، اصلاح ژن و درج (اضافه کردن) ژن. بر این اساس، پژوهشگران از ابزارهایی متفاوتی که قادر به ایجاد شکست دورشته در DNA هستند برای ایجاد انواع تغییرات در ژنوم استفاده می‌کنند. نوکلئازهای اختصاصی برای ویرایش ژن، شامل توالی هدف مهندسی شده و آنزیم‌های محدودگر است. پس از اینکه نوکلئاز برنامه‌ریزی شده، ژن مورد نظر را برای معرفی شکست‌های دو رشته‌ای (DSBs، double-breaks strand breaks) می‌شکافد، ترمیم مولکولی از طریق دو مکانیسم اساسی مختلف ادامه می‌یابد: تعمیر مبتنی بر همسانی (HDR)، که در آن DNA شکسته با استفاده از یک توالی DNA همولوگ به عنوان یک الگو ترمیم می‌شود و اتصال انتهایی غیر همولوگ (NHEJ)، که در آن انتهای شکسته در توالی DNA غیر همولوگ دوباره به یکدیگر متصل می‌شوند. مکانیسم تعمیر HDR، که در یک DNA الگو را برای تصحیح یا درج یک توالی انتخابی در محل شکست DNA را فراهم می‌کند، کپی دقیق الگو را در یک مکان خاص از ژنوم تسهیل کرده و شکست DNA همولوگ را ترمیم می‌کند. در حالی که مکانیسم تعمیر NHEJ منجر به درج یا حذف کوچک (indels) در محل مورد نظر یا شکستگی می‌شود [۲۰، ۲۱]. درنتیجه این مکانیسم می‌تواند یک راه کارآمد برای عملکرد ژن‌های معیوب باشد. همان‌گونه که اشاره شد، امروزه از چهار نوع متفاوت نوکلئازهای متصل‌شونده به DNA در ویرایش ژنی استفاده می‌شود: مگانوکلئاز، نوکلئازهای انگشت روی (ZFN)، نوکلئازهایی با عملکرد مشابه فعال‌کننده‌های عوامل رونویسی (TALEN) و نوکلئاز Cas9 که جدیدترین نوع کشف شده است [۲۲، ۲۳]. در **جدول ۱** مقایسه‌ای بین این چهار نوکلئاز از نظر ویژگی‌ها و مکانیسم عمل ارائه شده است. همچنین در **شکل ۲** عملکرد آنها به تصویر کشیده شده است.

مزایای فناوری ویرایش ژنی

ویرایش ژنی در حوزه‌های مختلف صنعتی و پژوهشی دارای اهمیت و کاربرد است. در ادامه به بررسی پیشرفت‌های هیجان انگیز اخیر در سهولت استفاده، ویژگی و خصوصیات فن آوری ویرایش ژن و کاربرد آنها در حوزه‌های مختلف اشاره می‌گردد [۲۴-۲۶].

حوزه سلامت انسان: فناوری ویرایش ژنی در حوزه

که مشخص شد، در سلول‌های بیوکاریوتوی، مکانیسم‌های هدف‌گیری ژنی دقیق‌تر را می‌توان با القای یک شکست دو رشته‌ای در یک هدف ژنومی مشخص به دست آورد. علاوه بر این دانشمندان دریافتند اگر یک آنزیم محدودکننده DNA مصنوعی را به سلول وارد کنند، می‌تواند DNA را در مکان‌های خاص شناسایی کند و به صورت دو رشته‌ای برش دهد که متعاقباً توسط مکانیسم‌های HDR (Homology-Directed) و NHEJ (NonHomologous End-joining) با تعمیر (Joining) ترمیم می‌شود و منجر به درج، حذف یا تعمیر مبتنی بر همولوگی می‌شود [۱۶، ۱۷]. در بین روش‌ها و مکانیسم‌های مختلف ویرایش ژنی، فناوری کریسپر (CRISPR) (به عنوان نسل چهارم ویرایش ژنی) از سایر روش‌ها پیشی گرفته است. این فناوری در سال ۲۰۱۲ توسط دو دانشمند زن، به جامعه علمی معرفی و ایشان را مفتخر به دریافت جایزه نوبل شیمی در سال ۲۰۲۰ نمود. لازم به توضیح است که در برخی منابع شروع اولین تحقیقات مرتبط با ویرایش ژنی را از سال ۱۹۸۷ اعلام کرده‌اند، که بیانگر وجود ایده‌های اولیه در این خصوص بوده است. کریسپر (CRISPR) از نظر لغوی به معنی تناوبهای کوتاه پالیندروم فاصله‌دار منظم Clusters Regularly Interspaced Short (Palindromic Repeat) که در منابع مختلف به آن اشاره شده است. سیستم کریسپر-Cas9 بعد از سیستم‌های ویرایش ژنی دیگر به نام‌های مگانوکلئاز (Ds-TEV) از اندودئوکسی ریبونوکلئازها (ZFN) (نوکلئازهای انگشت روی) و TALEN (نوکلئازهای مؤثر فعال کننده رونویسی) توسعه یافت و با توجه به ویژگی‌های منحصر به فرد آن توانست توجه زیاد محققان را به خود جلب نماید، به طوری که چاپ مقالات و اختراع‌ها در این زمینه رشد زیادی را نشان دهد (**شکل ۱**). لازم به ذکر است که بیشتر تحقیقات در این خصوص از نظر نوع بیماری به سرطان، ایدز و هپاتیت اختصاص یافته است [۱۸، ۱۹].




شکل ۱) میزان چاپ مقالات مرتبط با ویرایش ژنی از سال ۲۰۰۵ تا ۲۰۱۸.

مکانیسم‌های ویرایش ژن

ویرایش ژن، توانایی ایجاد تغییرات بسیار خاص در توالی DNA یک موجود زنده را دارد و اساساً ساختار ژنتیکی آن را مهندسی می‌کند. این فرآیند با استفاده از آنزیم‌ها،

جدول ۱) مقایسه روش‌های مختلف ویرایش ژنوم.

نوکلئاز	مکانیسم عمل	مگانوکلئاز	ZFNs	TALEN	CRISPR/Cas9
نوكلئاز					
تراالف هدف‌گذاری		پروتئین-DNA	پروتئین-DNA	پروتئین-DNA	DNA-DNA
قيمت		۲۲ بازی	۴۰-۳۰ بازی	۳۶-۱۸ بازی	۴۵-۱۲ بازی
رهایش درمانی		متوجه	زیاد	زیاد	کم
هدف‌گیری چندگانه		پیچیده	ساده	ساده	پیچیده
اختصاصیت (خارج هدف)		اختصاصی	نسبتاً غیراختصاصی	نسبتاً غیراختصاصی	غیراختصاصی
نیازمند دیمریزاسیون		بله	بله	بله	خیر
بسته‌بندی وکتور		پیچیده	پیچیده	پیچیده	متوجه

A. Meganucleases**B. Zinc Finger Nucleases (ZFNs)****C. Transcription-Activator Like Effector Nucleases (TALENs)****D. CRISPR/Cas9**

شکل ۲) تصویری از مکانیسم نوکلئازهای هدفمند جهت ویرایش ژنی. (A) مگانوکلئاز، (B) ZFNs، (C) TALENs (D) CRISPR/Cas9. روند اجرایی ویرایش ژنی با استفاده از فناوری Cas9/CRISPR

حوزه کاربردهای تحقیقاتی: با فناوری‌هایی همچون ویرایش ژنی می‌توان حیوانات جدید و مدل‌های سلولی را طراحی و تولید کرد که به ما در مورد آشنازی بیشتر با بیماری‌ها و آزمایش داروهای جدید و واکسن‌ها بر روی آن مدل‌های سلولی و حیوانی طراحی و تولیدشده، کمک نماید.

حوزه کشاورزی: با استفاده از ابزارهای ویرایش ژنی می‌توان دانه‌های محصولات کشاورزی را اصلاح نمود بدون اینکه به دیگر ژن‌های آن آسیب وارد گردد. بر این اساس می‌توان به محصولات کشاورزی دست یافت که قادرند در برابر عفونتها و صدمات محیطی مقاوم بوده و در نتیجه آن امنیت غذایی را بهبود بخشید.

حوزه بیوانرژی: با کمک ابزارهایی همچون ویرایش ژنی می‌توان در تولید سوخت‌های زیستی (سین) فعالیت نمود. براین اساس می‌توان با اصلاح مسیرهای متابولیکی و بیوشیمیایی سلول‌های مربوطه تولید سوخت زیستی نظری اتانول را در سلول‌های جلبک یا دانه‌های مربوطه، افزایش داده و بهینه نمود [۲۶-۲۷].

حوزه جرم‌شناسی: با استفاده از فناوری کریسپر و تلفیق آن با فناوری انگشت‌نگاری DNA می‌توان روش‌های نوینی در تشخیص هویت جنایی و جرم‌شناسی را توسعه داد. انگشت نگاری DNA (ژنتیکی) روشی است که در سال ۱۹۸۵ اولین بار توسط Jeffrey Alec (Repeat Tandem of Number Variable) VNTR با استفاده از توالی‌های متغیر تکرارپذیر به ابعاد ۱۵ تا ۱۰۰ بازی به نام VNTR (Repeat Tandem of Number Variable) نام گردید. به جامعه علمی و متخصصین جرم‌شناسی ارائه شد. انگشت نگاری ژنتیکی این امکان را به متخصصین می‌دهد که براساس نمونه DNA اختصاصی افراد مختلف، تفاوت‌ها و شباهت‌های بین آنها را مشخص نماید. بر این اساس در صحنه‌های جرم، ارتباط افراد با یکدیگر قابل رصد و شناسایی است. با توجه به توالی VNTR هر شخص، می‌توان gRNA (ابزار تشخیصی ویرایش ژنی) را طراحی نمود. بر این اساس می‌توان یک کریسپر برای اسکن DNA یا یافتن VNTR اختصاصی طراحی کرد. در اسکن کریسپر DNA، اگر کریسپر نتواند به صورت هدفمند VNTR را پیدا کند به آن متصل نمی‌شود و به این معنی است که هیچ رنگ فلورسانسی در زیر نور UV ظاهر نمی‌شود. اما اگر اسکن انجام و هدف شناسایی و اتصال صورت گیرد، سیگنال فلورسانس ایجاد شده و به این معنی است که VNTR می‌تواند در DNA موجود باشد [۲۷].

مخاطرات فناوری ویرایش ژنی
در جهان امروز، اهمیت روزافزون دانش زیست‌شناسی به عنوان یک علم زیربنایی بر هیچ‌کس پوشیده نیست.

ژن‌درمانی تحولی اساسی ایجاد می‌کند و قادر است طیف وسیعی از بیماری‌هایی (نظیر دیابت، سرطان، سیستیک فیبروزیس و کم خونی سلول داسی شکل) که تاکنون امکان درمان آنها فراهم نبوده را با استفاده از این فناوری درمان نماید. همه سرطان‌ها، حاصل جهش‌های پرشمار و متنوعی است که به رشد و تکثیر بیش از حد سلول‌ها و بروز فنوتیپ‌های بدخیم منجر می‌گردد. بستر رخداد و حیطه مختلف شده توسط این جهش‌ها را می‌توان به چهار دسته مجزا رده‌بندی کرد: انکوژن‌ها، سرکوب‌کننده‌های تومور، عوامل اپیزنتیکی و ژن‌های ایجادکننده مقاومت به شیمی‌درمانی. فناوری کریسپر-Cas9 به عنوان یک ابزار قدرتمند و با ویژگی بالا، توانای اصلاح این جهش‌ها و درمان تقریبی سرطان‌های حاصل از آنها را دارد. از آنجا که تغییرات انکوژنی در شماری از سرطان‌ها، افزایش تکثیر سلول‌ها و وضعیت بدخیمی را در پی دارد، می‌توان انکوژن‌هایی مانند گیرنده تیروزین کینازی Erb2 را به طور مستقیم توسط فناوری کریسپر-Cas9 هدف قرار داد. از یک دیدگاه تکمیلی توسط روش کریسپر-Cas9 می‌توان جهش‌های عامل سرطان را در رده‌های سلولی انسان و الگوهای حیوانی ایجاد کرد. در همین راستا، رده‌های سلولی سرطان پانکراس ساخته شده‌اند. از فناوری کریسپر-Cas9 می‌توان در الگوهای حیوانی مبتلا به انواع بیماری (از بیماری‌های ارثی تا سرطان‌ها) نیز بهره گرفت. تغییرات قابل توارث را توسط فناوری کریسپر-Cas9 و هدفگیری مستقیم یک یا چند ال در تخم حیوان ایجاد کرده و در میان الگوهای حیوانی ترانس‌ژنیک، بیشتر آزمون‌ها بر روی الگوهای موشی شکل گرفته است. اگرچه پژوهشگران موفق به ساخت الگوهای پریمات‌های غیرانسانی توسط هدفگیری چندگانه ژنها نیز شده‌اند. مزیت این الگوها در بازسازی و امکان بررسی بیماری‌های پیچیده انسانی مانند بیماری‌های تحلیل‌بنده اعصاب است. با این وجود الگوهای موشی نسبت به سایرین از مزایای بیشتری از جمله به صرفه بودن هزینه کار کردن با آنها برخوردار هستند و علاوه بر آن، الگوهای موشی برای مطالعات گستره جهش‌زایی به شکل درون‌تنی (vivo in) بسیار مناسب هستند [۲۵].

حوزه مواد جدید: با استفاده از این فناوری‌ها می‌توان به سنتز مواد جدیدی دست یافت که می‌تواند در کاربردهای مختلف نظیر رهایش داروهای خوارکی یا تولید حسگرهای زیستی، مورد استفاده واقع گردد.

حوزه توسعه دارو: با استفاده از این فناوری‌ها می‌توان سلول‌های مهندسی شده‌ای تولید نمود که تولید دارو را در یک شرایط بهینه‌شده و با بازده بالا تولید نماید. علاوه بر این، به طور معناداری قیمت تمام‌شده دارو را کاهش داده و امکان دسترسی آسان به دارو را فراهم می‌سازد.

ژنی می‌تواند امنیت زیستی جوامع را دچار خطرات جبران‌ناپذیری کند. اکنون ویرایش ژنوم بسیار ساده‌تر، سریع‌تر، ارزان‌تر و کارتر از همیشه (همانند ویرایش یک مقاله در رایانه) به محققین در حوزه‌های مختلف علمی کمک می‌کند. نسل چهارم از ویرایش ژنی، که با نام Cas9-CRISPR Cas9 شناخته می‌شود، می‌تواند برنامه‌های ویرایش جدید، از ویروس‌ها و باکتری‌ها گرفته تا حیوانات، گیاهان و انسان‌ها را مدیریت نماید. اما همان‌طور که این فناوری توسعه می‌یابد، چگونه باید آن را کنترل کرد؟ پروفسور جنیفر دودنا، کاشف نوکلئاز Cas9 و برنده جایزه نوبل ۲۰۲۰ در این حوزه، ضمن ابراز نگرانی از پیامدهای منفی توسعه فناوری ویرایش ژنی، بودجه ۳/۳ میلیون دلاری از دارپا آمریکا (Research Advanced Defense Agency Projects) به منظور بررسی راهکارهای آتی-کریسپر را دریافت کرده است. خط قمز این فناوری نیز دست‌ورزی بر روی جنین انسان مطرح شده است [۲۸-۳۰]. لازم به یادآوری است که فناوری ویرایش ژنوم مبتنی بر کریسپر سبب انقلابی شگرف در علوم پزشکی و سایر حوزه‌های علمی شده است. این فناوری که در حدود یک دهه توسعه یافته است، دانشمندان را مஜذوب خود کرده است. به طوری که به فردی با تحصیلات کمتر از دبیرستان اجازه می‌دهد تا ژنوم هر حیوان یا گیاهی را ویرایش کند. در واقع، دانش‌آموزان دبیرستانی اکنون از این فناوری برای انجام آزمایش‌هایی استفاده می‌کنند که پیش از این برای اغلب دانشمندان فقط در حد رویا بود. عمدت تحقیقات دانشمندان بر پتانسیل فوق العاده استفاده از ویرایش ژنوم برای درمان سرطان متمرکز شده است. این کار بر اساس آشنازی و درک الگوی جدید شبکه سرطان به وجود می‌آید که به بررسی چگونگی کنترل سلول‌های سرطانی می‌پردازد. رویکردهای جدید مبتنی بر ژن برای درمان سرطان، استفاده از ویرایش ژنوم را به عنوان ابزاری کارا مطرح کرده است. متأسفانه زمانی که بتوانیم با استفاده از کریسپر سرطان را درمان کنیم، می‌توان با استفاده از همین فناوری سرطان را ایجاد کرد. بر این اساس محققین توانسته‌اند مدل‌های سرطانی را بر روی رایانه طراحی کرده و هنگامی که بتوانند بیماران سرطانی را با کریسپر درمان کنند، امکان ایجاد تومورهای سرطانی به صورت مصنوعی نیز مهیا می‌گردد. به همین خاطر بمب سرطان با استفاده از کریسپر قابل پیاده‌سازی خواهد بود. درنتیجه امروزه فناوری کریسپر به عنوان یک سلاح زیستی جدید مطرح شده و دانشمندان نسبت به عوایض امنیت زیستی آن هشدار می‌دهند [۳۱، ۳۲]. کاربرد بسیار ساده کریسپر سبب شده است که این فناوری به طور بالقوه بسیار خطرناک باشد. این فناوری دارای ویژگی‌هایی است که آن را به یک سلاحی نظامی و بیوتوریستی ایده‌آل تبدیل کرده و مورد پسند هکرهای زیستی نیز قرار گرفته است. آقای Zayner Josiah از پیشگامان هک زیستی

در اثر مطالعات عمیق و بررسی‌های فراوان، مزهای زیست‌شناسی و یافته‌های مربوط به شناخت طبیعت، به گونه‌ای دور از تصور گسترش یافته است. حجم اطلاعات حاصل و رشد روز افزون آن نیز قابل مقایسه با هیچ دورانی نیست. امروزه زیست‌فناوری به عنوان شاخه‌ای از کاربردهای زیست‌شناسی، نسبت به هر زمان دیگر پیشرفت نموده و به دلیل کاربردهایی که در سلامت، بهداشت و اقتصاد دارد، اهمیت و ارزش روز افزونی یافته است. این پیشرفت‌های مهم در زیست‌فناوری عمدتاً ناشی از پیشرفت در ابزارسازی و کاربرد آنها در توسعه مزهای زیست‌شناسی است. شگرفترین پیشرفت‌های این دانش و فن در عرصه‌های اکولوژی، ژنتیک، میکروب‌شناسی، زیست‌شناسی مولکولی، زیست شیمی، فناوری‌های کشت سلولی و مهندسی فرآیند حاصل شده است. ظهور علوم جدید ژنومیکس، پروتئومیکس، بیوانفورماتیک، سیستم بیولوژی، سینتیک بیولوژی و ویرایش ژنی نیز در نتیجه این پیشرفت‌ها بوده است. از سوی دیگر امروزه زیست‌شناسی به اندازه شیمی در جنگ جهانی اول و فیزیک در جنگ جهانی دوم در معرض سوء استفاده خصومت‌آمیز قرار دارد. نیروی عظیم تجارت بین‌المللی که پشت‌وانه این علم پایه است، آن را به سوی نوآوری‌هایی سوق داده است که به موازات ارزش پژوهشی قابل فروش آن، ممکن است برای اهداف تخریبی نیز به کار گرفته شود. اگر علم و فناوری در حوزه‌های زیستی توسط کشوری مورد بهره‌برداری قرار گیرد، می‌تواند یکی از جدی‌ترین مشکلات بشریت را که تا به حال با آن روبرو نبوده، نمایان سازد. اگر تولید نسل جدید تسليحات زیستی با قدرت پیکری شود، به خصوص اگر برای کنترل و استیلای بر انسان از آن استفاده گردد، خواهد توانست مسبب ایجاد یک رقابت فناوری خطرناک گردد. اگر نیروی فناوری زیستی از لحاظ سیاسی مهار نشود، خواهد توانست روش‌های عالمانه‌ای را ابداع کند که راههای مدیریت جنگ را تغییر داده و ابزارهای قربانی کردن افراد غیرنظامی را فزونی بخشد. باید خاطر نشان کرد، مباحثی که در زیر به آنها پرداخته می‌شود، به هیچ‌وجه سعی در بزرگنمایی خطرات احتمالی فناوری زیستی ندارد؛ چرا که چنین احتمالی در مورد هر فناوری دیگر نیز وجود دارد، چه آنها که امروزه کاربرد گستره‌ای در جوامع یافته‌اند (مثل IT و مخابرات) و چه آنهایی که در آینده (در حوزه سلامت) مجال بروز خواهند یافت (همچون ویرایش ژنی، سنتز مصنوعی و خلق انسان). این گونه مطالعات می‌تواند توانمندی‌های بالقوه فناوری زیستی در پیشبرد قابلیت‌های دفاعی نوین را نیز نشان دهد؛ به طوری که متولیان دفاع زیستی کشور، به پتانسیل‌های بالقوه این فناوری در جهت اهداف دفاعی (همچون ارائه روندهای درمانی جدید و روش‌های تشخیص نوین در راستای پدافند زیستی) توجه خاصی مبذول نمایند. در بین فناوری‌های مختلفی که در حوزه زیست و سلامت امروزه مطرح شده است، فناوری ویرایش

یک ویروس ویرایشگر مبتنی بر کریسپر آلوود شوند، اما تنها فردی که پیش شرط‌های اولیه را داشته باشد، ژنومش ویرایش می‌گردد. علاوه بر این موارد، متأسفانه ویژگی‌های بیشتری از سلاح بالقوه مبتنی بر کریسپر وجود دارد که آنها را به سلاح‌های ایده‌آل برای کشتار جمعی دقیق و هدفمند آینده تبدیل کرده است. به عنوان مثال اثرات آن می‌تواند ماه‌ها پنهان بماند و بمب‌های کریسپر اثرات سمی طولانی مدتی که سلاح‌های هسته‌ای دارند را ندارند. همچنین برای اغلب موجودات قابل پیاده‌سازی بوده و می‌تواند به عنوان سلاح مؤثر بر سیستم اعصاب نیز برنامه‌ریزی گردد. درنتیجه کریسپر به عنوان یک سلاح کشتار جمعی به منظور نسل‌کشی قابل توجه و تأمل است [۳۴، ۳۵]. همچنین از منظر امنیت زیستی با استفاده از فناوری کریسپر می‌توان به طور بالقوه سرطان‌های دقیقی را ایجاد و القاء کرد که افراد را در عرض چند ماه از بین ببرد. متأسفانه، ایجاد سرطان بسیار ساده‌تر از درمان سرطان با ویرایش ژنوم بوده و جذابیت اصلی یک ویروس کشندۀ طراحی شده با کریسپر به عنوان یک سلاح بیوتوریسمی، دقت زیادی در ناتوانی و نابودی دسته جمعی افراد ارائه می‌دهد. متأسفانه این مباحث مربوط به فیلم‌های علمی-تخیلی و ترسناک فانتزی نیست بلکه این یک خطر بسیار واقعی در حال و آینده برای بشریت است. باید توجه داشت که احتمالاً آزمایشگاه‌هایی در سرتاسر جهان وجود دارند که در حال توسعه فناوری کریسپر برای توسعه نسل نوین سلاح‌های زیستی هستند. همان‌گونه که اشاره شد، کریسپر قابلیت نسل‌کشی را نیز دارد. با توجه به اینکه یک نسل خاص دارای ویژگی‌های ژنتیکی منحصر به‌فردی است که آنها را از سایر نسل‌ها متمایز می‌سازد، پس همه اعضای آن نسل اهداف بالقوه یک ویروس کشندۀ طراحی شده با کریسپر هستند. برای مثال، اگر پیش‌شرط این باشد که فرد باید چشم‌های قهوه‌ای داشته باشد، هر فرد با رنگ چشم قهوه‌ای هدف بالقوه ویروس کشندۀ طراحی شده با کریسپر است. با استفاده از سلاح کریسپر می‌توان بیماری‌هایی را ایجاد کرد که فرد مورد نظر دچار مرگ آهسته یا سریع گردد. برخی دانشمندان هم که تحلیل‌های قابل توجه درباره احتمالات ممکن ارائه داده‌اند، طیفی از موضوعات خطرساز را مطرح ساخته‌اند. برخی از این گزارش‌ها بیانگر نگرانی‌های اساسی در آینده است که می‌توانند ثمره برنامه‌های تحقیقاتی مخفی باشند. خصوصاً این گزارش‌ها احتمال وجود ویروس‌های مخفی که می‌توانند به طور سری وارد ژنوم یک جمعیت شده و بعدها توسط یک علامت فعال گردند را منتفی ندانسته‌اند. مثال دیگر آنها «مرگ برنامه‌ریزی شده سلول» است. این توانایی که بتوان ژنوم را وارد ذخیره ژنی جمعیت مشخصی نموده و به دلخواه خود به آن حمله نمود، یا این‌که یک عامل بیماری‌زای کاملاً جدید به وجود آورد، نشانگر تغییر توانمندی‌هاست [۳۵، ۳۶].

و مؤسسه Odin از سال ۲۰۰۶، آموزش‌های برخط و کیت‌های ژن درمانی ساده‌ای مبتنی بر فناوری کریسپر به مشتریان خود در سراسر جهان ارائه می‌دهد که ضمن آموزش ساده انجام ویرایش ژنی، محصولات دستکاری ژنتیکی شده (نظیر قورباغه سبز درختی با سرعت رشد بالا) را قادرند طراحی و تولید کنند [۳۳].

بر این اساس، به نظر می‌رسد در آینده نه چندان دور، طراحی و تولید تسلیحات زیستی (کشتار جمعی) مبتنی بر کریسپر را شاهد خواهیم بود که از مبب هسته‌ای نیز خطرناک‌تر باشد. به عقیده برخی دانشمندان، سلاح‌های هسته‌ای یک فناوری منسخ شده به حساب می‌آید چرا که نگهداری آن سخت و پیچیده است. از نظر نظامی، سلاح‌های کریسپر بسیار برتر از سلاح‌های هسته‌ای به حساب آمده و احتمالاً جایگزین آنها خواهد شد. این ویژگی‌های ویرایش مبتنی بر کریسپر، تسلیحاتی کردن آن را بسیار آسان می‌کند. می‌توان ویروسی مهندسی شده ایجاد نمود که ویرایش کریسپر را به صورت کاملاً کنترلی که فقط انسان‌هایی که ژنوم‌شان دارای مشخصات خاص باشد، توسط ویروس کشته یا غیرفعال شوند. اهمیت امنیت زیستی کریسپر به قدری بالا است که دانشمندان در خصوص طراحی و تولید انسان‌های برنامه‌ریزی شده و ویرایش بر روی جنین انسانی هشدار داده و در حال تدوین قوانین ملی و بین‌المللی در این خصوص هستند. لازم به توضیح است که دانشمند چینی، آقای Jiankui He در ۸ اکتبر ۲۰۱۸ تولد دوقلوهای دختر چینی با فناوری کریسپر را اعلام رسمی کرد. در این دوقلو که از پدر مبتلا به ایدز و مادر سالم متولد شده‌اند، ژن CCR5 که مرتبط با ورود ویروس HIV به درون سلول‌ها است، ویرایش و حذف شده است. این فعالیت علمی که به صورت غیرقانونی و محروم‌انه صورت گرفته، دانشمندان این حوزه را شوکه گرده و منجر به جرمیه نقدی و ۳ سال حبس برای این دانشمند چینی گردیده است. Jiankui هم‌المللی شد نتیجه تحقیقات خود را در دومین کنفرانس بین‌المللی ویرایش ژنوم انسان که در سال ۲۰۱۸ در هنک کنگ برگزار می‌شد، ارائه دهد که مورد انتقاد وسیع جامعه علمی حتی دانشمندان چینی قرار گرفت [۳۴].

سئوالی که امروزه مطرح شده است این است که چرا سلاح کریسپر می‌تواند بسیار خطرناک باشد؟ پاسخ به این سوال را می‌توان در موارد زیر جستجو کرد:

- ۱- ویرایش مبتنی بر کریسپر Cas ۲- ویرایش بخشنده از ژنوم هدف طراحی گردد.
- ۳- ویرایش مبتنی بر کریسپر Cas را می‌توان توسط ویروس‌ها به یک میزبان معین تحويل و ارائه داد.
- ۴- ویرایش‌ها با به طور بالقوه می‌توانند توسط قواعد ریاضی کاملاً کنترل شده باشد. به بیان دیگر، اعمال ویرایش ژنومی هدف تنها در صورتی اعمال می‌شود که شرایط دقیق مشخص شده خاصی در ژنوم فرد هدف وجود داشته باشد. به عنوان مثال، دو نفر می‌توانند توسط

همه بازی را بمنده شود. درنتیجه با استدلال خود شلینگ، این وضعیت بین‌المللی بسیار ناپایدار، شکننده و خطرناک خواهد بود [۳۵].

بر این اساس، راهکار پدافندی برای مقابله با تهدیدات حاصل از اینگونه فناوری‌ها و امنیت زیستی چگونه می‌تواند باشد؟ به بیان دیگر چگونه از خود در برابر تسلیحات زیستی ناشی از کریسپر دفاع کنیم؟ برای پاسخ به این سوالات توجه به موارد زیر دارای اهمیت است: ۱- باید توجه و آگاهی افکار عمومی و رهبران سیاسی از خطرات ویرایش ژنوم مبتنی بر کریسپر افزایش یابد.

۲- با توجه به نتایج و خطرات واقعی و بالقوه ویرایش ژنوم مبتنی بر کریسپر در حملات بیوترورسی‌منی، باید سریعاً راهبردهای دفاعی و پدافندی به منظور مقابله با چنین حملات احتمالی، توسعه یابد.

۳- هر ویرایش مبتنی بر کریسپر می‌تواند معکوس گردد. به بیان دیگر یک جهش شبکه‌ای که باعث ایجاد سرطان می‌شود، در اصل می‌تواند معکوس شود تا سرطان متوقف گردد. وقتی بدانیم چگونه سرطان را متوقف کنیم، خواهیم دانست که چگونه سرطان را ایجاد کنیم. یا هر زن ضروری برای حیات را می‌توان در اصل با یک ویرایش معکوس غیرفعال کرد. این امر نیاز به یک ابتکار دفاعی-تحقیقاتی منسجم دارد.

۴- ضروری است که قوانین بین‌المللی منسجم (در راستای کنوانسیون منع توسعه، تولید و ذخیره سلاح‌های زیستی) جهت بررسی مخاطرات این فناوری بسیار خطرناک (جهت مقابله و نه جلوگیری از آن)، اتخاذ گردد.

۵- یک کمیته اخلاق زیستی بین‌المللی جدید جهت مقابله با گروه‌های خطر در این خصوص مورد نیاز است.

نتیجه‌گیری

فناوری ویرایش ژنی، دریچه و راهکاری نوین را به جامعه علمی نشان داده است که به واسطه آن می‌توان برای مقابله با اکثر بیماری‌ها، روش‌های درمانی مناسب اتخاذ نمود. براین اساس ویرایش ژنوم، فرسته‌های فوق العاده ای در زیست‌شناسی، زیست فناوری و علوم پزشکی از جمله پیشگیری و مقابله با بیماری‌ها و تولید مواد غذایی سودمند ارائه می‌دهد. از سوی دیگر، سلاح‌های زیستی مبتنی بر کریسپر، توازن منطقی و استراتژیک قدرت که جهان را از جنگ‌های فاجعه‌بار عاری نگه داشته است، از بین می‌برد. جهان با فناوری بالقوه خطرناک‌تر از سلاح‌های هسته‌ای به دلیل سهولت توسعه و دقت کاربرد آن، روبه‌رو است. هدف قرار دادن دقیق افراد با ویروس کشنده مبتنی بر کریسپر به این معنی است که همانند جنگ هسته‌ای، دیگر مانع برای تخریب مقابله

راهکارهای پدافندی ویرایش ژنی

با وجودی که در ۲۹ ژوئن سال ۲۰۱۸ در مجله NewsWeek بحث استفاده از فناوری ویرایش ژنی بر روی انسان به منظور حذف بیماری‌های ژنی اعلام و رسانه‌ای شد، ولی برخی دانشمندان و پیشگامان این فناوری (نظیر پروفسور دودنا) ملاحظات اخلاقی را همچنان به عنوان یک بحث جدی مطرح می‌کنند. چین از سال ۲۰۱۵ تحقیقات گستردگی را به رهبری پوفسور You Lu، انکولوژیست دانشگاه سیچوان در حال توسعه این فناوری بر روی انسان آغاز نموده و همچنان در حال توسعه این فناوری بر روی انسان چینی است: به طوری که در ۲۸ اکتبر ۲۰۱۷، یک گروه به رهبری او سلول‌های اصلاح شده را به یک بیمار مبتلا به سرطان ریه تهاجمی به عنوان بخشی از یک آزمایش بالینی در بیمارستان غرب چین تزریق کردند [۳۶]. با این حال به عقیده اغلب دانشمندان خط قرمز فناوری ویرایش ژنی، دستکاری ژنتیکی بر روی انسان ایست. ولی امروزه دانشمندانی نیز وجود دارند که با استفاده مخفیانه از فناوری ویرایش ژنی در حال تحقیق و توسعه بر روی انسان انسان به منظور طراحی و خلق انسان‌های فاقد بیماری و دارای قابلیت‌های خاص هستند. این کودکان طراحی شده دارای هوش بالا، ذهن خلاق، حواس پنج گانه با قدرت زیاد و مقاوم به بیماری‌های مختلف هستند. همچنین برخی این فناوری را موتور پیدایش نامیده‌اند، چرا که به دانشمند قدرتی خداگونه (براساس اعتقدات خود) برای خلق و بهبود انسان‌های آینده (فرا-انسانیت) را می‌دهد.

از طرف دیگر برخلاف قانون شلینگ، تسلیحات زیستی مبتنی بر کریسپر دارای پیامدهای استراتژیک بین‌المللی است. طبق کتاب بازی کلاسینگ توماس شلینگ، در عصر هسته‌ای یک استراتژی متعادل بین‌المللی مشاهده می‌شود. به این معنی که برای حفظ تعادل، اگر یک طرف توانایی‌های تسلیحات هسته‌ای خود را افزایش یا کاهش دهد، طرف دیگر نیز باید از همین روش پیروی کند. بر این اساس هر طرف می‌داند که طرف مقابله چه سلاح‌هایی در اختیار دارد و هر دو طرف با آگاهی از این موضوع (بر مبنای بازرسی باز از تأسیسات هسته‌ای)، تعادلی را در این خصوص رعایت می‌کنند. اما در عصر فناوری ویرایش ژنوم، به دلیل سهولت ساخت سلاح‌های زیستی مبتنی بر کریسپر در آزمایشگاه‌های کوچک که رصد و شناسایی آنها عملأً غیرممکن است، آگاهی از توانمندی و ظرفیت طراحی و ساخت سلاح زیستی طرف مقابله، با شکست مواجه شده و درنتیجه آن استراتژی مبتنی بر بازرسی و تخریب متقابل این‌گونه تسلیحات کشتار جمعی نیز شکست می‌خورد. بنابراین، سلاح‌های زیستی مبتنی بر کریسپر یک تغییر اساسی در قانون شلینگ ایجاد می‌کند. بازی متوازن، بدون برد، چانه ژنی و با جمع غیر صفر شلینگ، به بازی کلاسیک با مجموع صفر نزدیک می‌شود، به طوری که طرفی که اول حمله می‌کند، ممکن است

ج- مقررات سختگیرانه ای برای اطمینان از احترام به افراد درگیر، جلوگیری از استفاده زودهنگام و سوء استفاده از فناوری و همچنین برای جلوگیری جدی از تغییرات ژنتیکی ناخواسته انسان، وضع گردد [۳۸-۴۰].

نکات بالینی و کاربردی در طب انتظامی: با توجه به ظهور فناوری های آینده داری همچون ویرایش ژنوم، لازم است ضمن به کارگیری فرصت های به دست آمده از این فناوری، به ویژه در حوزه زیست و سلامت و تشخیص و درمان بیماری های لاعلاج، از منظر امنیت زیستی نیز به این فناوری توجه ویژه داشت. خلق موجودات جدید و نوپدید، هک زیستی و ایجاد انسان های برنامه ریزی شده، از جمله مخاطرات امنیت زیستی این فناوری در آینده تلقی می گردد که ضروری است معاونت محترم بهداشت و درمان سтاد کل نیروهای مسلح با همکاری مراکز دانشگاهی، برنامه ریزی و راهبردهای مشخص را در این خصوص ترسیم نمایند.

تشکر و قدردانی: مطالعات فوق در پژوهشکده علوم و فناوری زیستی دانشگاه صنعتی مالک اشترا انجام شد و از خدمات مسئولین این دانشگاه سپاسگزاری می شود.

تعارض منافع: بدین وسیله نویسنندگان مقاله تصريح می نمایند که هیچ گونه تعارض منافعی در قبال مطالعه حاضر وجود ندارد.

سهم نویسنندگان: سامانه فتح اللهی، جمع آوری داده؛ دکتر مهدی زین الدینی، ارائه ایده و طراحی مطالعه، جمع آوری داده، تجزیه و تحلیل داده ها. همه نویسنندگان در نگارش اولیه مقاله و بازنگری آن سهیم بودند و همه با تأیید نهایی مقاله حاضر، مسئولیت دقت و صحت مطالب مندرج در آن را می پذیرند.

منابع مالی: مطالعه حاضر با حمایت مالی گروه علوم زیستی مجتمع دانشگاهی شیمی و مهندسی شیمی دانشگاه صنعتی مالک اشترا، در راستای رصد فناوری های نوظهور انجام شد و حاصل بخشی از طرح پژوهشی به شماره "۱۹۷۳۰۱۸۰۲۰۸" بود.

References

1. Riedel S. Biological warfare and bioterrorism: A historical review. *J Baylor Scott White Health*. 2004;17(4):400-06. doi:10.1080/08998280.2004.11928002
2. Barras V., Greub G. History of biological warfare and bioterrorism. *Clin Microbiol Infect*. 2014;20(6):497-502. doi: 10.1111/1469-0691.12706
3. Xue Y, Yu H, Qin G. Towards good governance on dual use biotechnology for global sustainable development. *Sustainability*. 2021;13:14056. doi: 10.3390/su132414056
4. DaSilva EJ. Biological warfare, bioterrorism, biodefense and the biological and toxin weapons convention. *Elect J Biotechnol*. 1999;2(3). doi: 10.2225/vol2-issue3-fulltext-2
5. DiEuliis D. Key national security questions for the future of synthetic biology. *Fletcher Forum World Aff*. 2019;43:127-40. <https://www.jstor.org/stable/45289832>
6. National Research Council. *Biotechnology Research in an Age of Terrorism*; National Academies Press: Washington, DC, USA, pp. 16-17, 2004. doi:10.17226/10827
7. Casadevall A. The future of biological warfare. *Microb Biotechnol*. 2012;5(5):584-87. doi: 10.1111/j.1751-7915.2012.00340.x.
8. Aken JV., Hammond E. Genetic engineering and biological weapons. *EMBO Reports*. 2003;4:S57-S60. <https://doi.org/10.1038%2Fsj.embor.embor860>
9. Black JL 3rd. Genome projects and gene therapy: gateways to next generation biological weapons. *Mill Med*. 2003;168(11):864-71. <https://pubmed>

ncbi.nlm.nih.gov/14680038/

10. Fraser CM. A genomics-based approach to biodefence preparedness. *Nat Rev Gen.* 2004;5:23-33. doi: 10.1038/nrg1245
11. Carrasco-Ramiro F, Peiro-Pastor R, Aguado B. Human genomics projects and precision medicine. *Gene Ther.* 2017;24:551-61. doi:10.1038/gt.2017.77
12. Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K et al. Gene therapy leaves a vicious cycle. *Front Oncol.* 2019;9:297. doi: 10.3389/fonc.2019.00297
13. Pfeifer A, Verma IM. Gene therapy: promises and problems. *Annu Rev Genomics Hum Genet.* 2001;2:177-211. doi: 10.1146/annurev.genom.2.1.177. PMID: 11701648.
14. Ahmar S, Saeed S, Khan MHU, Ullah Khan S, Mora-Poblete F, Kamran M et al. A revolution toward gene-editing technology and its application to crop improvement. *Int J Mol Sci.* 2020;21(16):5665. doi: 10.3390/ijms21165665.
15. Li C, Brant E, Budak H, Zhang B. CRISPR/Cas: a nobel prize award-winning precise genome editing technology for gene therapy and crop improvement. *J Zhejiang Univ Sci B.*2021;22(4):253-84. doi:10.1631/jzus.B2100009
16. Khalil A.M. The genome editing revolution: review. *J Genet Eng Biotechnol.* 2020;18(1):68. doi:10.1186/s43141-020-00078-y
17. Miyaoka Y, Berman JR, Cooper SB, Mayerl SJ, Chan AH, Zhang B et al. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease and cell type on genome editing. *Sci Rep.* 2016;6:23549. doi:10.1038/srep23549
18. Adli M. The CRISPR tool kit for genome editing and beyond. *Nat Commun.* 2018;9(1):1911. doi: 10.1038/s41467-018-04252-2.
19. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. *Sig Trans Targ Ther.* 2020;5:1. doi:10.1038/s41392-019-0089-y
20. Maeder M, Gersbach C. Genome-editing technologies for gene and cell therapy. *Molecular Therapy.* 2016;24(3):430-46. doi: 10.1038/mt.2016.10.
21. Kim H; Kim J. A guide to genome engineering with programmable nucleases. *Nature Reviews Genetics.* 2014;15(5):321-34. doi: 10.1038/nrg3686.
22. Abbas Raza SH, Hassanin AA, Pant SD, Bing S, Sitohy MZ, Abdelnour SA. et al. Potentials, prospects and applications of genome editing technologies in livestock production. *Saudi J Biol Sci.* 2022;29:1928-35. DOI: 10.1016/j.sjbs.2021.11.037
23. Guha TK, Edgell DR. Application of alternative nucleases in the age of CRISPR/Cas9. *Int J Mol Sci.*2017;18:2565. doi:10.3390/ijms18122565.
24. Barrangou R, Sontheimer EJ., Marraffini LA. CRISPR: Biology and application. John Wiley & Sons Inc. 2022. 304p. <https://www.wiley.com/en-au/CRISPR%3A+Biology+and+Applications-p-9781683673613>
25. Addgene, CRISPR 101, Synthego, 2017. www.addgene.org.
26. Kaboli S and Babazada H. CRISPR mediated genome engineering and its application in industry. *Curr Issues Mol Biol.* 2018;26:81-92. doi: 10.21775/cimb.026.081
27. Masood U. DNA Fingerprinting and CRISPR cas9 System. *Eur Exp Biol.* 2021;11(5):138. <https://www.primescholars.com/articles/dna-fingerprinting-and-crispr-cas9-system.pdf>
28. Isaacson W. The code breaker: Jennifer Doudna, Gene editing, and the future of the human race. Simon & Schuster Books for Young Readers. 2022. 560p. <https://www.amazon.com/Code-Breaker-Jennifer-Doudna-Editing/dp/1982115858>
29. Carey N. Hacking the code of life: How gene editing will rewrite our futures. Icon Books; 2019. 176p. <https://www.amazon.com/Hacking-Code-Life-editing-rewrite/dp/1785784978>
30. Doudna JA, Sternberg SH. A crack in creation: Gene editing and the unthinkable power to control evolution. Mariner Books. 2017. 304p. <https://www.amazon.com/Crack-Creation-Editing-Unthinkable-Evolution/dp/0544716949>
31. West RM, Gronvall GK. CRISPR cautions: Biosecurity implications of gene editing. *Perspect Biol Med.* 2020;63(1):73-92. doi: 10.1353/pbm.2020.0006. PMID: 32063588.
32. Vogel KM, Ouaghram-Gormley SB. Anticipating emerging biotechnology threats: A case study of CRISPR. *Politics Life Sci.* 2018;37(2):203-219. doi: 10.1017/pls.2018.21. PMID: 31120699.
33. DiEuliis D and J. Giordano, Gene editing using CRISPR/Cas9: implications for dual-use and biosecurity. *Protein Cell.* 2018;9(3):239-40. doi:10.1007/s13238-017-0493-4
34. Alonso M, Savulescu J. He Jiankui's gene-editing experiment and the non-identity problem. *Bioethics.* 2021;00:1-11. DOI:10.1111/bioe.12878
35. Werner E. The coming CRISPR wars: Or why genome editing can be more dangerous than nuclear weapons. Preprint. 2019. doi: 10.13140/RG.2.2.17533.00485
36. DiEuliis D and Giordano J. Why gene editors like CRISPR/Cas may be a game-changer for Neuroweapons. *Health Secur.* 2017;15(3):296-302. DOI:10.1089/hs.2016.0120
37. Cyranoski D. CRISPR gene-editing tested in a person for the first time. *Nature.* 2016;539:479. <https://doi.org/10.1038/nature.2016.20988>
38. Munirah Isa N, Zulkifli NA, Man S. Islamic perspectives on CRISPR/Cas9-mediated human germline gene editing: A preliminary discussion. *Sci Eng Ethics.* 2020;26:309-23. doi:10.1007/s11948-019-00098-z
39. Alsomali N, Hussein G. CRISPR-Cas9 and He Jiankui case: an Islamic bioethics review using Magasid al-Sharia and Qawa'id Fiqhiyyah. *Asian Bioethics Rev.* 2021;13:149-65. doi.org/10.1007/s41649-021-00167-1
40. Al-Balas QAE, Dajani R, Al-Delaimy WK. The ethics of gene editing from an Islamic perspective: A focus on the recent gene editing of the Chinese twins. *Sci Eng Ethics.* 2020;18:51-60. doi.org/10.1007/s11948-020-00205-5