

ORIGINAL ARTICLE**OPEN ACCESS**

The Effectiveness of Transcranial Direct Current Stimulation (tDCS) on Improving Cognitive Abilities in Martial Athletes

Ali Rezaei Sharif ¹ PhD, **Sara Taghizadeh Hir** ² * PhD Candidate, **Ghasem Fattahzadeh Ardalani** ³ MD¹ Department of Counseling, Faculty of Educational Sciences & Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.² Department of Psychology, Faculty of Educational Sciences & Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.³ Department of Neurology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran.**ABSTRACT**

AIMS: Improving cognitive abilities in athletes may increase their performance and predict success in competitions. Therefore, investigating methods such as Transcranial Direct Current Stimulation that targets brain structures can be important. This study aimed to investigate the effectiveness of Transcranial Direct Current Stimulation in improving cognitive abilities in Martial Athletes.

MATERIALS AND METHODS: The research method was semi-experimental with a pretest-posttest design and control group, conducted on all martial athletes of Ardabil in Iran in 2022. Thirty people were selected from the martial athletes of Ardabil city who were members of Shahid Abbasi sports club using available sampling method and randomly assigned to the experimental and control group (15 people in each group). The experimental group received 10 sessions of 20-minute Transcranial Direct Current Stimulation (tDCS), but the control group received no training. Nejati Cognitive Abilities Questionnaire (2013) was used in two stages, pre-test and post-test, to collect data. Data analysis was done using multivariate covariance analysis in SPSS 23 software.

FINDINGS: Thirty people participated in this research all of whom were men. The average age of the participants in the experimental group was 25.33 ± 4.53 years, and in the control group was 24.26 ± 4.97 years. The average scores of the experimental group in the post-test in working memory ($F=8.23$; $p=0.01$), selective attention ($F=45.73$; $p=0.00$), decision making ($F=25.60$; $p=0.03$), planning ($F=38.08$; $p=0.00$), sustained attention ($F=24.27$; $p=0.00$), social cognition ($F=54.76$; $p=0.01$) and cognitive flexibility ($F=11.07$; $p=60.00$) has improved compared to the control group, which difference was statistically significant ($P<0.05$) unlike the pre-test stage. According to the F values for the post-test and their significance level ($P<0.05$), it was observed that electrical stimulation of the brain could significantly improve the cognitive abilities of athletes.

CONCLUSION: According to the results of this study, Transcranial Direct Current Stimulation is an effective method for improving the cognitive abilities of martial artists. Therefore, specialists and psychologists, along with other interventions, can use this non-invasive method as a low-cost and accessible method to improve the cognitive abilities of these people.

KEYWORDS: **Transcranial Direct Current Stimulation; Cognitive Aspects; Athletes**

How to cite this article:

Rezaei Sharif A, Taghizadeh Hir S, Fattahzadeh Ardalani G. *The Effectiveness of Transcranial Direct Current Stimulation (tDCS) on Improving Cognitive Abilities in Martial Athletes*. J Police Med. 2023;12(1):e2.

***Correspondence:**

Address: University of Mohaghegh Ardabili, Daneshgah Street, Ardabil, Iran, Postal Code: 5619913131
Mail: sara.taghizadeh1370@gmail.com

Article History:

Received: 18/10/2022
Accepted: 31/12/2022
ePublished: 08/02/2023

2 The Effectiveness of Transcranial Direct Current Stimulation (tDCS) on Improving Cognitive Abilities in Martial Athletes

INTRODUCTION

Recently, the relationship between exercise and cognitive abilities has received much attention. Cognitive abilities are a field of knowledge that many sports researchers intend to investigate [1]. Scientists studying physical activity and exercise have used knowledge of brain function to explain the relationship between cognitive abilities and exercise performance [2]. Cognitive abilities are the interface between behavior and brain structure and include a wide range of abilities (planning, attention, response inhibition, problem-solving, and cognitive flexibility) [3]. Cognitive abilities, in addition to being necessary to perform daily activities [4], allow a person to choose and implement appropriate responses by identifying and obtaining environmental information and integrating it with existing knowledge [5]. A recent meta-analysis in this field points to the superiority of successful athletes in basic cognitive functions [5]. Several studies have highlighted a significant relationship between exercise and cognitive abilities, such as attention and concentration, executive functions, cognitive processing speed, memory, and language [6]. Vestberg et al. [7] have shown that improving brain abilities in male and female athletes may enhance performance and predict success in competition.

Similarly, Wagner et al. [8] have also shown that cognitive aspects such as attention capacity and executive function influence sports performance. In general, cognitive ability is considered more relevant in sports that require continuous attention, managing multiple variables, or adapting to changing situations [9, 10]. In addition, good cognitive performance is particularly important as a competitive advantage in fields requiring coordination, reaction speed, mental calculations, concentration, and memory [11]. One of these sport fields is martial arts. Martial arts have become increasingly widespread, defined as combat, defense, and quick fighting with bare hands against an opponent [12, 13]. Although the physical condition of martial athletes is of particular importance, the regulation of the body's physiological functions depends on the nervous and cognitive systems. Physical strength, high-pressure competitions, high tension, and serious injuries are among the most critical

indicators in martial arts, which, unlike other sports, require the athletes of these fields to have specific characteristics [14]. Studies have shown that martial arts have their specific psychological needs and dynamics, so applying strategies to evaluate and improve the cognitive abilities of these athletes is particularly important [15]. One of the methods used today to improve people's cognitive abilities is transcranial Direct Current Stimulation (tDCS). In direct current stimulation, a low-intensity electrical current transmitted through the scalp is used and is a suitable option due to its non-invasive nature, safety, and cost-effectiveness [16]. tDCS has been used by physicians and neuroscientists to treat psychiatric and neurological disorders [17]. Since the abnormal change of neural plasticity is an essential component of many neurological and psychiatric diseases, non-invasive brain stimulation, which can modulate neural activity by affecting synaptic plasticity, is a potential treatment option [18]. Direct current stimulation has emerged as a successful method for improving neurological and psychiatric functions over the past few decades [19]. The results of Mohajeri aval et al.'s research [20] show that transcranial Direct Current Stimulation is effective in experiential avoidance and worry in people with generalized anxiety disorder. Also, the research results of Elsner et al. [21] show that tDCS can improve people's daily activities and cognitive and physical performance after injury. Taherifard, Saeedmanesh, and Azizi [22] also showed in their research that tDCS is effective in treating anxiety and stuttering severity. Martial arts are considered one of Iran's most important and medal-winning sports [23]. On the other hand, the review of research shows the importance of addressing the role of psychological factors and using new methods to improve the performance of athletes [9, 17]. Therefore, using methods that can increase athletes' cognitive abilities can effectively improve and increase these people's performance levels. These studies can also be used to improve the performance of military forces by improving their cognitive abilities. The present study was conducted with the aim of investigating the effectiveness of transcranial Direct Current Stimulation on improving the cognitive abilities of martial arts

athletes.

MATERIALS & METHODS

The current research is semi-experimental with a pre-test and post-test design with a control group. The statistical population of the present study included all martial athletes of Ardabil in Iran in 2022. Considering that the minimum sample size in experimental research is 15 people for each group [24], using the available sampling method, 30 people were selected from the martial athletes of Ardabil city who were members of Shahid Abbasi sports club. The criteria for entering the research were: being a martial athlete, being between 18 and 40 years old, written consent to participate in the research, not suffering from epilepsy and severe physical disabilities, not suffering from other physical and mental diseases (including a history of concussion, severe depression, anxiety, and heart problems). Exclusion criteria included withdrawal from the research, absence of more than two sessions, simultaneous participation in neurophysiological treatment sessions, and failure to complete the questionnaire. In order to collect data, the cognitive abilities questionnaire was used.

Cognitive abilities questionnaire: This questionnaire is a self-report tool by Nejati [4] to measure cognitive abilities. This questionnaire has 30 questions that measure cognitive ability on a five-point Likert scale from 1 (rarely) to 5 (almost always). This questionnaire has six subscales: memory, inhibitory control, selective attention, decision-making, planning, sustained attention, social cognition, and cognitive flexibility. A high score on this questionnaire indicates more cognitive problems. Questions 24, 25, and 26 have reverse scoring. The reliability of the questionnaire in Nejati's research [4] was calculated by Cronbach's alpha method, and the alpha coefficient was 0.83. The internal consistency of the subscales for questions related to memory is 0.75, inhibitory control and selective attention is 0.57, decision making is 0.61, planning is 0.57, sustained attention is 0.53, social cognition is 0.43, and cognitive flexibility is 0.45; for this reason, the use of subscales alone is not recommended. The result of testing the reliability of the test, using the test-retest method in a sample of 23 students of Shahid

Beheshti University, was 0.86, and the results of the pre-test and post-test have a significant correlation at the level of 0.001. To measure the simultaneous accuracy of the test, the correlation between the academic grade point average and the subscales of the test of 395 students has been used as except for social cognition, other subscales were correlated with the grade point average at $p<0.001$ [4]. In the present study, the reliability of the subscales was calculated for memory at 0.57, inhibitory control at 0.54, decision making 0.41, planning at 0.65, attention at 0.35, social cognition at 0.58, and cognitive flexibility at 0.76.

The method of conducting the research was that after selecting the subjects and randomly assigning the participants by simple random method and using the table of random numbers, two experimental and control groups (15 people in each group) were determined. The experimental group received two mA anodal current (in the F3 region located on the left forehead) and cathodal (F4 located on the right forehead) according to the 10-20 system for ten 20-minute sessions during five weeks. This stimulation was performed by a pair of sponge electrodes with a size of 3.7 cm dipped in water and sodium solution with 30 seconds of ascending and descending. Electrical stimulation was performed by an expert with a doctorate in psychology at Sharif Psychology Clinic, who was blinded to the group of subjects and the study's hypothesis. At the beginning of the treatment, the participants were measured as a pre-test and, after completing the interventions, as a post-test using the cognitive abilities questionnaire. In this study, blinding was done in such a way that the statistical analyst was unaware of the type and manner of interventions in the experimental and control groups.

Ethical Permissions: This research has been approved by the ethical code of IR.UMA.REC.1401.045 in the Research Ethics Committee of Mohaghegh Ardabili University. In this research, ethical principles such as explaining the aim of the research to the sample people, obtaining their informed consent, assuring the participants about the confidentiality of the information and maintaining confidentiality, the optionality of participation in the research, the right to voluntarily withdraw from the research, and the

4 The Effectiveness of Transcranial Direct Current Stimulation (tDCS) on Improving Cognitive Abilities in Martial Athletes

harmlessness of the therapeutic intervention were observed.

Statistical Analysis: To analyze the data, descriptive and inferential statistics (multivariate analysis of variance) were used in SPSS 23 software. Also, before performing the multivariate covariance analysis, Levene's test was used to check the homogeneity of the group's variance. The significance level in the tests was considered 0.05.

FINDINGS

Thirty people participated in this research all of whom were male. The average age of the participants in the experimental group was 25.33 ± 4.53 years and in the control group was 24.26 ± 4.97 years. Also, in the experimental group, two people (13.30%) had a high school diploma, nine people (60.00%) had a bachelor's degree, and four people (26.70%) had a master's degree. In the control group, three people (20.00%) had a high school diploma, seven people (46.70%) had a bachelor's degree, and five people (33.30%) had a master's degree. Descriptive statistics of the research variables in the pre-test stage showed that the average scores of cognitive abilities in the experimental and control groups were almost equal and did not differ much in the experimental and control groups. However, the post-test results showed that the experimental group's average scores of cognitive abilities improved compared to the control group (Table 1).

Table 1) Average of subscales of cognitive abilities in pre-test and post-test of experimental and control groups

Subscales	Experimental groups (n=15)		control groups (n=15)	
	pre-test (M \pm SD)	post-test (M \pm SD)	pre-test (M \pm SD)	post-test (M \pm SD)
Memory	10.66 \pm 1.23	7.66 \pm 1.63	10.13 \pm 1.40	10.13 \pm 1.45
selective attention	21.00 \pm 0.84	17.80 \pm 1.01	21.13 \pm 0.124	20.66 \pm 1.29
Decision making	15.00 \pm 0.84	12.06 \pm 1.27	14.46 \pm 1.12	14.20 \pm 1.01
planning	9.06 \pm 0.88	6.93 \pm 0.88	9.00 \pm 1.00	8.73 \pm 0.88
Sustained attention	11.73 \pm 1.03	8.73 \pm 1.22	11.20 \pm 0.86	10.93 \pm 0.70
Social cognition	9.53 \pm 1.83	12.66 \pm 1.29	9.20 \pm 0.86	9.40 \pm 1.22
flexibility	8.53 \pm 0.91	6.66 \pm 1.29	8.53 \pm 1.12	8.53 \pm 1.44

The Kolmogorov-Smirnov test was used to check

the normality of the distribution of variable scores. Considering that the significance level in the research variables was more than 0.05, the data distribution was normal, and normality tests were used. Also, according to the Box's M test, the equality of the covariance matrix of the dependent variables between the experimental and control groups was not significant ($p>0.05$). The results of Levene's test to check the homogeneity of error variances of the variables in the research groups were not significant for cognitive ability variables ($p>0.05$). In other words, the error variances of these variables were homogeneous in the groups. The results of multivariate covariance analysis showed that based on the figures obtained after adjusting the pre-test scores, there was a significant effect in the factor between the subjects of the group in working memory ($F=8.23$; $p=0.01$), selective attention ($F=45.73$; $p=0.00$), decision making ($F=25.60$; $p=0.03$), planning ($F=38.08$; $p=0.00$), sustained attention ($F=24.27$; $p=0.00$), social cognition ($F=54.76$; $p=0.01$) and cognitive flexibility ($F=11.07$; $p=0.00$) and the average scores of the experimental group improved significantly (Table 2).

Table 2) The results of covariance analysis related to the scores of the two groups in cognitive abilities

Variable	Source of changes	Total of squares	df	Mean square	F	p	Eta
Working memory	pre-exam	2.13	1	2.13	1.21	0.27	0.04
	group	45.63	1	45.63	19.05	0.01	0.40
	error	49.06	28	1.75	-	-	-
Selective attention	pre-exam	0.13	1	0.13	0.11	0.73	0.004
	group	61.63	1	61.63	45.73	0.001	0.62
	error	31.73	28	1.13	-	-	-
Decision making	pre-exam	2.13	1	2.13	2.15	0.15	0.07
	group	34.13	1	34.13	25.60	0.03	0.47
	error	27.73	28	0.99	-	-	-
Planning	pre-exam	0.03	1	0.03	0.37	0.84	0.00
	group	24.30	1	24.30	38.08	0.001	0.57
	error	24.93	28	0.89	-	-	-
Sustained attention	pre-exam	2.13	1	2.13	2.35	0.13	0.07
	group	36.30	1	36.30	24.27	0.001	0.46
	error	25.33	28	0.90	-	-	-
Social cognition	pre-exam	0.83	1	0.83	1.15	0.29	0.04
	group	80.03	1	80.03	54.76	0.01	0.66
	error	20.13	28	0.71	-	-	-
Cognitive flexibility	pre-exam	0.13	1	0.13	0.12	0.72	0.00
	group	20.83	1	20.83	11.07	0.001	0.28
	error	29.06	28	1.03	-	-	-

DISCUSSION

The present study was conducted to investigate

the effectiveness of transcranial Direct Current Stimulation in improving the cognitive abilities of martial artists. The results obtained in the present study showed that this treatment caused a significant increase in the cognitive abilities of the experimental group compared to the control group ($p<0.05$). This finding is consistent with previous studies [25, 26, 27]. In the explanation of this finding, it can be said that due to the need of martial athletes to have an optimal level of cognitive functions, performing treatments based on types of brain stimulation, such as Direct Current Stimulation in the prefrontal region, can increase the effectiveness of cognitive reserve [28]. Considering the importance and role of the prefrontal region on cognitive actions, the stimulation of this region increases the cognitive functions and the excitability of the cortex in the networks related to cognitive functions [26]. The fundamental principle in transcranial Direct Current Stimulation is that it creates changes in the excitability of the cerebral cortex using anodic stimulation. During the stimulation, the current between the electrodes goes to the brain and adjusts the brain in such a way that the area under the anode is depolarized and thus stimulated, the stimulation of the anode, through the depolarization of the neuron, leads to a change in the resting state of the neuron, and as a result, the excitability of the desired area increases [29, 30], while the area under the cathode is hyperpolarized and inhibited [31]. In fact, the most important goal of transcranial Direct Current Stimulation in the prefrontal region is to modulate the neural activity in this region of the brain in a path dependent on neuronal polarity [32]. In this regard, the results of the research of Jung et al. [33], Wong et al. [34], Anderson et al. [35], as well as the study of Nejati et al. [31] show that transcranial stimulation by changing cell membrane transporters, neurotrophic factors and as a result increase brain capacity, changes the function of the desired area and as a result improves the function related to that area.

In another explanation, the review of the research results of Dubreuil et al. [36] and Jung et al. [33] shows that the cause of the effect of transcranial Direct Current Stimulation can be explained by increasing the release of dopamine, as a result of

increasing the excitability of the prefrontal cortex, which leads to improved cognitive performance. Direct Current Stimulation increases excitability in the prefrontal cortex, which may be caused by an increase in glutamate levels. This amino acid has much to do with memory and response to stimuli, brain development, synaptic flexibility, and learning [37]. Finally, the effects of transcranial Direct Current Stimulation in the prefrontal region of the brain, due to its cumulative effect, can have a significant effect on improving cognitive indicators such as attention, inhibitory control, and active memory [38, 39], which play vital roles in the performance of martial arts athletes. The current research was associated with limitations such as limited access to the research sample, use of available sampling methods, and lack of comparison of research on women and men. Examining brain markers after transcranial Direct Current Stimulation through neuroimaging methods to examine brain changes was also not possible due to its high cost. In future research, it is suggested that the sample group be conducted from other communities and other sampling methods be applied to obtain more detailed information about the cognitive abilities of martial athletes. In addition, after transcranial Direct Current Stimulation, it is suggested to use neuroimaging methods such as fMRI so that brain changes in the stimulation area can be checked. Finally, considering the results of this research and other research that indicate the effectiveness of transcranial Direct Current Stimulation on improving cognitive abilities, psychologists and specialists are suggested to use this method as a complementary method to improve the cognitive ability of athletes.

CONCLUSION

Since transcranial Direct Current Stimulation is generally effective in improving cognitive abilities and their sub-components, such as attention, memory, cognitive flexibility, social cognition, decision-making, and planning, it can be concluded that this intervention can be used as an effective non-pharmacological method to improve the abilities of martial athletes.

Clinical & Practical Tips in POLICE MEDICINE:

According to the current research on the effectiveness of Direct Current Stimulation in improving the cognitive abilities of martial athletes, such interventions can be used in military forces, especially martial artist workers.

Acknowledgments: The authors appreciate the subjects who participated in this research and the efforts of all those who helped us to achieve this research.

Conflict of Interest: The authors of the article state that there is no conflict of interest in this study.

Authors Contribution: First author, presentation of the idea and study design, data collection and interpretation; Second and third authors, data collection and interpretation. All the authors participated in the initial writing of the article, and all accept the responsibility for the accuracy and correctness of the contents of the present article with the final approval of the present article.

Funding Sources: The present research had no financial support.

نشریه طب انتظامی

۶ دسترسی آزاد

مقاله اصیل

اثریخشی تحریک الکتریکی فرا جمجمه‌ای مغز بر بهبود توانایی‌های شناختی ورزشکاران رزمی کار

علی رضایی شریف^۱, سارا تقی‌زاده هیر^{۲*}, قاسم فتاح زاده اردلانی^۳

^۱ گروه مشاوره، دانشکده علوم تربیتی و روان‌شناسی، دانشگاه محقق اردبیلی، اردبیل، ایران.

^۲ گروه روان‌شناسی، دانشکده علوم تربیتی و روان‌شناسی، دانشگاه محقق اردبیلی، اردبیل، ایران.

^۳ گروه نورولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی اردبیل، اردبیل، ایران.

چکیده

اهداف: بهبود توانایی‌های شناختی در ورزشکاران ممکن است عملکرد آنها را افزایش داده و موفقیت در مسابقات را پیش‌بینی کند. لذا بررسی روش‌هایی همچون تحریک الکتریکی مغز که ساختارهای مغزی را مورد هدف قرار می‌دهد، می‌تواند حائز اهمیت باشد. پژوهش حاضر با هدف بررسی اثریخشی تحریک الکتریکی فرا جمجمه‌ای مغز بر بهبود توانایی‌های شناختی ورزشکاران رزمی کار انجام شد.

مواد و روش‌ها: این پژوهش از نوع نیمه‌آزمایشی با طرح پیش‌آزمون-پس‌آزمون با گروه کنترل بود که بر روی تمامی ورزشکاران رزمی کار شهر اردبیل در سال ۱۴۰۱ انجام شد. ۳۰ نفر با روش نمونه‌گیری در دسترس، از ورزشکاران رزمی کار شهر اردبیل و عضو باشگاه ورزشی شهید عباسی، انتخاب شدند. آزمودنی‌ها به صورت تصادفی ساده در دو گروه آزمایش و کنترل (۱۵ نفر در هر گروه) جایگزین شدند. گروه آزمایش تحت ۱۰ جلسه ۲۰ دقیقه‌ای تحریک الکتریکی فرا جمجمه‌ای مغز قرار گرفتند. گروه کنترل، مداخله‌ای دریافت نکرد. از پرسشنامه توانایی‌های شناختی نجاتی (۱۳۹۲) در دو مرحله پیش‌آزمون و پس‌آزمون به منظور جمع‌آوری داده‌ها استفاده شد. تجزیه و تحلیل داده‌ها با استفاده از تحلیل کوواریانس چندمتغیره در نرم‌افزار SPSS ۲۳ انجام شد.

یافته‌ها: در این پژوهش ۳۰ نفر شرکت کردند و تمام افراد شرکت‌کننده مرد بودند. میانگین سن شرکت‌کنندگان در گروه آزمایش $۴۵/۵\pm ۴/۵$ سال و در گروه کنترل $۴۷/۲\pm ۴/۲$ سال بود. میانگین نمرات گروه آزمایش در مرحله پیش‌آزمون در حافظه کاری ($F=۸/۲۳$, $p=۰/۰۱$), توجه انتخابی ($F=۴۵/۷۳$, $p=۰/۰۰$), تضمیم گیری ($F=۲۵/۶۰$, $p=۰/۰۳$), برنامه‌ریزی ($F=۳۸/۰۸$, $p=۰/۰۰$), توجه پایدار ($F=۲۴/۲۷$, $p=۰/۰۰$), شناخت اجتماعی ($F=۵۴/۷۶$, $p=۰/۰۱$) و انعطاف‌پذیری شناختی ($F=۱۱/۰۷$, $p=۰/۰۰$) نسبت به گروه کنترل بهبود یافت که این تفاوت برخلاف مرحله پیش‌آزمون، از نظر آماری معنادار بود ($p<0/۰۵$). با توجه به مقادیر F برای پس‌آزمون و سطح معناداری آنها ($p<0/۰۵$), مشاهده شد که تحریک الکتریکی مغز به طور معناداری می‌تواند توانایی‌های شناختی ورزشکاران را بهبود بخشد.

نتیجه‌گیری: بر اساس نتایج این پژوهش، تحریک الکتریکی فرا جمجمه‌ای مغز روشی مؤثر برای بهبود توانایی‌های شناختی ورزشکاران رزمی کار است. بنابراین متخصصان و روان‌شناسان می‌توانند از این روش غیرتهرامی به عنوان روشی کم‌هزینه و در دسترس به منظور ارتقای توانایی‌های شناختی این افراد در کنار سایر مداخلات استفاده کنند.

کلیدواژه‌ها: تحریک الکتریکی مستقیم مغز، جنبه شناختی، ورزشکاران

تاریخچه مقاله:

دریافت: ۱۴۰۱/۰۷/۲۶
پذیرش: ۱۴۰۱/۰۱/۱۰
انتشار: ۱۴۰۱/۱۱/۱۹

نویسنده مسئول*

آدرس پستی: اردبیل، انتهای خیابان دانشگاه، دانشگاه
محقق اردبیلی، کد پستی: ۵۶۱۹۹۱۳۱۳۱
پست الکترونیکی:
sara.taghizadeh1370@gmail.com

نحوه استناد به مقاله:

Rezaei Sharif A, Taghizadeh Hir S, Fattahzadeh Ardalani G. *The Effectiveness of Transcranial Direct Current Stimulation (tDCS) on Improving Cognitive Abilities in Martial Athletes*. J Police Med. 2023;12(1):e2.

مقدمه

در سال‌های اخیر، رابطه بین ورزش و توانایی‌های شناختی بسیار مورد توجه قرار گرفته است. توانایی‌های شناختی، حوزه‌ای از دانش است که بسیاری از محققین حوزه ورزش، قصد بررسی آن را دارند [۱]. دانشمندانی که فعالیت‌های بدنی و ورزش را مطالعه می‌کنند، از دانش عملکرد مغز برای توضیح ارتباط بین توانایی‌های شناختی و عملکرد ورزش، استفاده کرده‌اند [۲].

توانایی‌های شناختی، رابط بین رفتار و ساختار مغز است و گستره وسیعی از توانایی‌ها (برنامه‌ریزی، توجه، بازداری پاسخ، حل مسئله و انعطاف‌پذیری شناختی) را در بر می‌گیرد [۳]. توانایی‌های شناختی علاوه بر اینکه لازمه انجام فعالیت‌های روزانه است [۴]، به فرد این امکان را می‌دهد تا از طریق شناسایی و به دست آوردن اطلاعات محیطی و ادغام آن با دانش موجود، پاسخ‌های مناسب را انتخاب و اجرا نماید [۵]. فراتحلیل اخیر در این زمینه به برتری ورزشکاران موفق از نظر عملکردهای شناختی پایه اشاره دارد [۶]. مطالعات متعدد، ارتباط قابل توجهی را بین ورزش و توانایی‌های شناختی، مانند توجه و تمرکز، عملکردهای اجرایی، سرعت عملکرد شناختی، حافظه یا زبان، برجسته کرده‌اند [۶]. Vestberg و همکاران [۷] نشان داده‌اند که بهبود توانایی‌های مغز در ورزشکاران مرد و زن ممکن است عملکرد را افزایش داده و موقیت در رقابت را پیش‌بینی کند. به طور مشابه، Wagner و همکاران [۸] نیز نشان داده‌اند که جنبه‌های شناختی مانند ظرفیت توجه و عملکرد اجرایی بر عملکرد ورزشی تأثیر می‌گذارد. به طور کلی، فرض بر این است که توانایی شناختی ممکن است در ورزش‌هایی که نیاز به توجه مداوم، مدیریت متغیرهای چندگانه یا سازگاری با موقعیت‌های متغیر دارد، مرتبط باشد [۹، ۱۰]. علاوه بر این، عملکرد شناختی خوب به عنوان یک مزیت رقابتی در رشته‌های مستلزم هماهنگی، سرعت واکنش، محاسبات ذهنی، تمرکز و همچنین حافظه اهمیت ویژه‌ای دارد [۱۱]. یکی از این رشته‌های ورزشی، ورزش‌های رزمی است. ورزش‌های رزمی که به عنوان هنر رزم، دفاع و مبارزه سریع با دستان خالی در برابر حریف تعریف می‌شوند، بیش از پیش محبوبیت یافته است [۱۲، ۱۳]. با وجود این که وضعیت جسمانی ورزشکاران رزمی از اهمیت ویژه‌ای برخوردار است، اما در نهایت، تنظیم عملکردهای فیزیولوژیکی بدن بستگی به سیستم عصبی و شناختی دارد. قدرت بدنی، مسابقات پرشوار، تنفس بالا و مصدومیت‌های خطرناک، از مهم‌ترین شاخص‌های موجود در رشته‌های رزمی است که بر خلاف سایر رشته‌های ورزشی، ورزشکاران این رشته‌ها را نیازمند ویژگی‌های خاصی می‌کنند [۱۴]. مطالعات نشان داده‌اند، ورزش‌های رزمی نیازهای روان‌شناختی و پویایی خاص خود را دارند، بنابراین استفاده از راهبردهایی جهت ارزیابی و ارتقای توانایی‌های شناختی این ورزشکاران، اهمیت ویژه‌ای دارد [۱۵].

مواد و روش‌ها

پژوهش حاضر از نوع نیمه‌آزمایشی با طرح پیش‌آزمون-پس‌آزمون با گروه کنترل است. جامعه آماری پژوهش حاضر، در برگیرنده تمامی ورزشکاران رزمی کار شهر اردبیل در سال ۱۴۰۱ بود. با توجه به اینکه حداقل حجم نمونه در تحقیقات آزمایشی، ۱۵ نفر به ازای هر گروه مطرح شده است [۱۶]، با استفاده از روش نمونه‌گیری در دسترس، از ورزشکاران رزمی کار شهر اردبیل و عضو باشگاه ورزشی شهید عباسی، ۳۰ نفر انتخاب شدند. معیارهای ورود به پژوهش عبارت بودند از: ورزشکار رزمی بودن، داشتن سن ۱۸ تا ۴۰

راست) مطابق با سیستم ۱۰-۲۰ را دریافت کردند. این تحریک، توسط یک جفت الکترود اسفنجی با اندازه ۳/۷ سانتی‌متر آغشته به محلول آب و سدیم با ۳۰ ثانیه صعود به بالا و پایین انجام شد. اجرای تحریک الکتریکی توسط فرد متخصص دارای مدرک دکتری روان‌شناسی در محل کلینیک روان‌شناسی شریف که از گروه‌بندی آزمودنی‌ها و فرضیه مطالعه بی‌اطلاع (کور) بود، انجام شد. شرکت‌کنندگان در ابتدای شروع درمان به عنوان پیش‌آزمون و پس از اتمام مداخلات، به عنوان پس‌آزمون به وسیله پرسش‌نامه توانایی‌های شناختی، مورد سنجش قرار گرفتند. در این مطالعه کورسازی بین صورت انجام شد که تحلیل گر آماری از نوع و چگونگی مداخلات در گروه‌های آزمایش و کنترل بی‌اطلاع بود.

ملاحظات اخلاقی: این پژوهش با کد اخلاق REC.UMA.IR 1401.045 در کیته اخلاق پژوهش دانشگاه حقوق اردبیلی به تصویب رسیده است. در این پژوهش اصول اخلاقی از جمله توضیح اهداف پژوهش برای افراد نمونه، کسب رضایت آگاهانه از آنها، اطمینان‌دهی به شرکت‌کنندگان در مورد محرمانه‌بودن اطلاعات و حفظ رازداری، اختیاری بودن شرکت در پژوهش، حق خروج اختیاری از پژوهش، بدون ضرر بودن مداخله درمانی، رعایت شد.

تجزیه و تحلیل آماری داده‌ها: به منظور تجزیه و تحلیل داده‌ها از آمار توصیفی و آمار استنباطی (تحلیل واریانس چندمتغیره) در نرم‌افزار SPSS 23 استفاده شد. همچنین قبل از انجام تحلیل کوواریانس چندمتغیره، جهت بررسی همکنی واریانس گروه‌ها، آزمون لوین استفاده شد. سطح معنی‌داری در آزمون‌ها ۰/۰۵ در نظر گرفته شد.

یافته‌ها

در این پژوهش ۳۰ نفر شرکت کردند و همه افراد شرکت‌کننده مرد بودند. میانگین سن شرکت‌کنندگان در گروه آزمایش ۲۵/۳۳ \pm ۴/۵۳ سال و در گروه کنترل ۲۴/۲۶ \pm ۴/۹۷ سال بود. همچنین در گروه آزمایش ۲ نفر (۱۳/۳۰ درصد) دارای تحصیلات دیپلم، ۹ نفر (۶۰/۰۰ درصد) لیسانس و ۴ نفر (۲۶/۷۰ درصد) فوق لیسانس بودند. در گروه کنترل نیز ۳ نفر (۲۰/۰۰ درصد) دارای تحصیلات دیپلم، ۷ نفر (۴۶/۷۰ درصد) لیسانس و ۵ نفر (۳۳/۳۰ درصد) فوق لیسانس بودند. آماره‌های توصیفی از متغیرهای پژوهش در مرحله پیش‌آزمون نشان داد که میانگین نمرات توانایی‌های شناختی در گروه آزمایش و کنترل تقریباً برابر بودند و در گروه آزمایش و کنترل تفاوت چندانی با یکدیگر نداشتند. اما نتایج در پس‌آزمون نشان داد که میانگین نمرات توانایی‌های شناختی در گروه آزمایش نسبت به گروه کنترل بهبود یافت (جدول ۱).

برای بررسی نرمال بودن توزیع نمرات متغیرها از آزمون کالموگروف-اسمیرنوف استفاده شد. با توجه به

سال، تمایل و رضایت کتبی برای شرکت در پژوهش، عدم ابتلا به صرع و ناتوانی‌های شدید جسمانی، عدم ابتلا به سایر بیماری‌های جسمانی و روانی (از جمله ساقه ضربه مغزی، افسردگی شدید، اضطراب و ناراحتی‌های قلبی). معیارهای خروج نیز شامل انصراف از پژوهش، غیبت بیش از دو جلسه، شرکت هم‌زمان در جلسات درمانی عصب فیزیولوژی و عدم تکمیل پرسش‌نامه بود. به منظور جمع‌آوری داده‌ها از پرسش‌نامه توانایی‌های شناختی استفاده شد:

پرسش‌نامه توانایی‌های شناختی: این پرسش‌نامه یک ابزار خودگزارشی است که توسط نجاتی [۴] به منظور سنجش توانایی‌های شناختی طراحی شده است. این پرسش‌نامه دارای ۳۰ سؤال است که توانایی شناختی را در مقیاس لیکرت پنج‌گزینه‌ای از ۱ (تقریباً هرگز) تا ۵ (تقریباً همیشه) می‌سنجد. این پرسش‌نامه دارای ۶ خرده‌مقیاس حافظه، کنترل مهاری و توجه انتخابی، تصمیم‌گیری، برنامه‌ریزی، توجه پایدار، شناخت اجتماعی و انعطاف‌پذیری شناختی است. نمره بالا در این پرسش‌نامه، نشان‌دهنده مشکلات شناختی بیشتر است. سؤالات ۲۴، ۲۵ و ۲۶ نمره‌گذاری معکوس دارد. قابلیت اعتماد پرسش‌نامه در پژوهش نجاتی [۴] با روش آلفای کرونباخ محاسبه شده و ضریب آلفای ۰/۸۳ به دست آمده است. همسانی درونی خرده‌مقیاس‌ها برای سؤال‌های مربوط به حافظه ۰/۷۵، کنترل مهاری و توجه انتخابی ۰/۵۷، تصمیم‌گیری ۰/۶۱، برنامه‌ریزی ۰/۵۷، شناخت اجتماعی ۰/۴۳ و انعطاف‌پذیری شناختی ۰/۵۳، نشان داده شده است؛ به همین دلیل استفاده از خرده‌مقیاس‌ها به تنها‌ی سفارش نمی‌شود. نتایج بررسی قابلیت اعتماد آزمون، به روش آزمون-بازآزمون در یک نمونه ۲۳ نفری از دانشجویان دانشگاه شهید بهشتی ۰/۸۶ بهوده است و نتایج پیش‌آزمون و پس‌آزمون در سطح ۰/۰۰۱ با هم ارتباط معنادار دارند. برای سنجش درستی هم‌زمان آزمون از همبستگی معدل تحصیلی و زیرمقیاس‌های آزمون ۳۹۵ نفر از دانشجویان مورد بررسی استفاده شده است که به جز شناخت اجتماعی، سایر زیرمقیاس‌ها در سطح $P<0/001$ با معدل همبستگی داشتند [۴]. در پژوهش حاضر، پایایی خرده‌مقیاس‌ها برای حافظه ۰/۵۷، کنترل مهاری ۰/۵۴، تصمیم‌گیری ۰/۴۱، برنامه‌ریزی ۰/۶۵، شناخت اجتماعی ۰/۵۸ و انعطاف‌پذیری شناختی ۰/۷۶ محاسبه شد.

شیوه اجرای پژوهش به این صورت بود که پس از انتخاب آزمودنی‌ها و گمارش تصادفی شرکت‌کنندگان به روش تصادفی ساده و با استفاده از جدول اعداد تصادفی، دو گروه آزمایش و کنترل (هر گروه ۱۵ نفر) تعیین شدند. گروه آزمایش به مدت ۱۰ جلسه و هر جلسه ۲۰ دقیقه در طول ۵ هفته، جریانی با شدت ۲ میلی‌آمپر آنودال (در ناحیه F3 واقع در پیشانی چپ) و کاتسودال (در پیشانی F4) و کاتسودال (در پیشانی چپ) و کاتسودال (در ناحیه F3

جدول (۲) نتایج تحلیل کوواریانس مربوط به نمرات دو گروه در توانایی‌های شناختی

Eta	P	F	متغیر	مجموع درجه میانگین مجددات	منبع تغییرات	پیش‌آزمون	آزادی مجددات		
							پیش‌آزمون	گروه	خطا
۰/۰۴	۰/۲۷	۱/۲۱	حافظه کاری	۲/۱۳	۱	۴۵/۶۳	۴۵/۶۳	گروه	خطا
۰/۴۰	۰/۰۱	۱۹/۰۵	توجه انتخابی	۶۱/۶۳	۱	۰/۱۳	۰/۱۳	پیش‌آزمون	خطا
-	-	-	برنامه‌ریزی	۲/۱۳	۲۸	۳۱/۷۳	۳۱/۷۳	گروه	خطا
۰/۰۰۴	۰/۷۳	۰/۱۱	انعطاف‌پذیری	۲/۱۳	۱	۰/۱۳	۰/۱۳	پیش‌آزمون	خطا
۰/۶۲	۰/۰۱	۴۵/۷۳	شناختی	۲/۱۳	۲۸	۲/۱۳	۲/۱۳	پیش‌آزمون	خطا
-	-	-	توجه پایدار	۲/۱۳	۱	۳۶/۳۰	۳۶/۳۰	گروه	خطا
۰/۰۷	۰/۱۵	۲/۱۵	شناخت اجتماعی	۲/۱۳	۱	۰/۸۳	۰/۸۳	پیش‌آزمون	خطا
۰/۴۷	۰/۰۳	۲۵/۶۰	انعطاف‌پذیری شناختی	۲/۱۳	۱	۰/۸۳	۰/۸۳	پیش‌آزمون	خطا
-	-	-	توجه پایدار	۰/۹۹	۲۸	۲/۱۳	۲/۱۳	پیش‌آزمون	خطا
۰/۰۰	۰/۸۴	۰/۳۷	شناخت اجتماعی	۰/۸۹	۲۸	۰/۰۳	۰/۰۳	پیش‌آزمون	خطا
۰/۵۷	۰/۰۱	۳۸/۰۸	برنامه‌ریزی	۰/۸۹	۱	۰/۰۳	۰/۰۳	پیش‌آزمون	خطا
-	-	-	توجه پایدار	۰/۹۰	۲۸	۰/۹۳	۰/۹۳	پیش‌آزمون	خطا
۰/۰۷	۰/۱۳	۲/۳۵	شناخت اجتماعی	۰/۹۰	۲۸	۰/۹۳	۰/۹۳	پیش‌آزمون	خطا
۰/۴۶	۰/۰۱	۲۴/۲۷	انعطاف‌پذیری	۰/۹۰	۲۸	۰/۹۳	۰/۹۳	پیش‌آزمون	خطا
-	-	-	توجه پایدار	۰/۹۰	۲۸	۰/۹۳	۰/۹۳	پیش‌آزمون	خطا
۰/۰۴	۰/۲۹	۱/۱۵	شناخت اجتماعی	۰/۹۰	۲۸	۰/۹۳	۰/۹۳	پیش‌آزمون	خطا
۰/۶۶	۰/۰۱	۵۴/۷۶	انعطاف‌پذیری	۰/۹۰	۲۸	۰/۹۳	۰/۹۳	پیش‌آزمون	خطا
-	-	-	توجه پایدار	۰/۹۰	۲۸	۰/۹۳	۰/۹۳	پیش‌آزمون	خطا
۰/۰۰	۰/۷۲	۰/۱۲	شناخت اجتماعی	۰/۹۰	۲۸	۰/۹۳	۰/۹۳	پیش‌آزمون	خطا
۰/۲۸	۰/۰۱	۱۱/۰۷	برنامه‌ریزی	۰/۹۰	۲۸	۰/۹۳	۰/۹۳	پیش‌آزمون	خطا
-	-	-	توجه پایدار	۰/۹۰	۲۸	۰/۹۳	۰/۹۳	پیش‌آزمون	خطا

تحریک این منطقه باعث افزایش کارکردهای شناختی و تحریک‌پذیری کوتکسی در شبکهای مربوط به کارکردهای شناختی شود [۲۶]. اصل بنیادی در تحریک الکتریکی فرآجمجمهای مغز این است که به نوعی تغییراتی در تحریک‌پذیری قشر مغز با استفاده از تحریک آندی ایجاد می‌کند. در طی تحریک، جریان بین الکترودها به مغز می‌رود و مغز را به گونه‌ای تنظیم می‌کند که منطقه زیر آند چار دپلاریزاسیون و در نتیجه تحریک شود، تحریک آندی از طریق دپلاریزه کردن نورون، منجر به تغییر در استراحت نورونی می‌شود و درنتیجه تحریک‌پذیری ناحیه مورد نظر را افزایش می‌دهد [۲۹، ۳۰]. در حالی که ناحیه زیر کاتد دچار هایپرپولاریزاسیون و مهار می‌شود [۳۱]. در واقع مهمترین هدف تحریک فرآجمجمهای مغز در ناحیه پیش‌پیشانی، تغییر فعالیت عصبی در این منطقه از مغز در یک مسیر وابسته به قطبیت نورونی است [۳۲]. در همین راستا نتایج پژوهش‌های *Jung* و *Wong* و *همکاران* [۳۳]، *Anderson* و *همکاران* [۳۵] نشان می‌دهد که تحریک فرآجمجمهای با تغییر ناقل غشای سلولی، فاکتورهای نوروتروفیک و درنتیجه افزایش ظرفیت مغزی، موجب تغییر عملکرد ناحیه مورد نظر و درنتیجه بهبود عملکرد مرتبط با آن ناحیه می‌شوند. در تبیینی دیگر، بررسی نتایج پژوهش *Dubreuil* و *همکاران* [۳۶] و *Jung* و *همکاران* [۳۳] نشان می‌دهد که می‌توان علت تأثیر تحریک الکتریکی فرآجمجمهای مغز را افزایش رهاسازی دوپامین، در نتیجه افزایش تحریک‌پذیری

اینکه سطح معناداری در متغیرهای پژوهش بزرگتر از ۰/۰۵ بود، توزیع داده‌ها نرمال بود و از آزمون‌های نرمالیته استفاده شد. همچنین بر اساس آزمون ام باکس، برای ماتریس کوواریانس متغیرهای وابسته در بین گروه‌های آزمایش و کنترل معنادار نبود ($P > 0/05$). نتایج آزمون لوین جهت بررسی همگنی واریانس‌های خطای متغیرها در گروه‌های پژوهش برای متغیرهای توانایی شناختی معنادار نبود ($P > 0/05$). به عبارت دیگر واریانس‌های خطای این متغیرها در گروه‌ها همگن بود.

جدول (۱) میانگین خرده‌مقیاس‌های توانایی‌های شناختی در پیش‌آزمون و پس‌آزمون گروه‌های آزمایش و کنترل

خرده‌مقیاس	گروه آزمایش (n=۱۵)		گروه کنترل (n=۱۵)	
	پیش‌آزمون (M±SD)	پس‌آزمون (M±SD)	پیش‌آزمون (M±SD)	پس‌آزمون (M±SD)
حافظه	۱۰/۱۲±۱/۴۵	۱۰/۱۲±۱/۴۰	۷/۶۶±۱/۶۳	۱۰/۶۶±۱/۲۳
توجه انتخابی	۲۰/۶۶±۱/۲۹	۲۱/۱۳±۰/۱۲۴	۱۷/۸۰±۰/۱۰	۲۱/۰۰±۰/۸۴
تصمیم‌گیری	۱۴/۲۰±۱/۰۱	۱۴/۴۶±۰/۱۲	۱۲/۰۶±۰/۱۷	۱۵/۰۰±۰/۸۴
برنامه‌ریزی	۸/۷۲۳±۰/۸۸	۹/۰۰±۱/۰۰	۶/۹۳±۰/۸۸	۹/۰۶±۰/۸۸
توجه پایدار	۱۰/۹۳±۰/۷۰	۱۱/۲۰±۰/۸۶	۸/۷۳±۰/۱۲۲	۱۱/۷۳±۱/۰۳
شناخت اجتماعی	۹/۴۰±۱/۲۲	۹/۳۰±۰/۸۶	۱۲/۶۶±۱/۲۹	۹/۵۳±۰/۸۳
انعطاف‌پذیری	۸/۵۳±۱/۴۴	۸/۵۳±۱/۱۲	۶/۶۶±۱/۲۹	۸/۵۳±۰/۹۱

نتایج تحلیل کوواریانس چندمتغیره نشان داد که بر اساس ارقام به دست آمده پس از تعديل نمرات پیش‌آزمون، اثر معناداری در عامل بین آزمودنی‌های گروه در حافظه کاری ($F=8/۲۳$: $p=0/01$; $F=25/60$: $p=0/00$ ؛ $F=45/73$: $p=0/03$ ؛ $F=۳۸/۰۸$: $p=0/00$ ؛ $F=۱۱/۰۷$: $p=0/00$ ؛ $F=۵۴/۷۶$: $p=0/01$)، شناخت اجتماعی ($F=۱۱/۰۷$: $p=0/00$) و انعطاف‌پذیری شناختی ($F=۱۲/۶۶$: $p=0/00$) وجود داشت و میانگین نمرات گروه آزمایش، به طور چشمگیری بهبود یافت (جدول ۲).

بحث

پژوهش حاضر با هدف بررسی اثربخشی تحریک الکتریکی فرآجمجمهای مغز بر بهبود توانایی‌های شناختی ورزشکاران رزمی کار انجام شد. نتایج به دست آمده در پژوهش حاضر نشان داد که این درمان باعث افزایش شناختی و توانایی‌های شناختی گروه آزمایش نسبت به گروه کنترل توانایی‌های شناختی گروه آزمایش نسبت به پیش‌پیشانی همسو شد ($p < 0/05$). این یافته با پژوهش‌های پیشین همسو است [۲۷، ۲۵]. در تبیین این یافته می‌توان گفت، با توجه به نیاز ورزشکاران رزمی کار به برخورداری از سطح مطلوبی از کارکردهای شناختی، انجام درمان‌های مبتنی بر انواع تحریک‌های مغزی مانند تحریک الکتریکی مغز در ناحیه پیش‌پیشانی می‌تواند اثربخشی ذخیره شناختی را افزایش دهد [۲۸]. با توجه به اهمیت و نقش ناحیه پیش‌پیشانی بر اعمال شناختی، به نظر می‌رسد

توانایی شناختی ورزشکاران استفاده شود.

نتیجه‌گیری

از آنجایی که تحریک الکتریکی فرا جمجمه‌ای مغز به طور کلی بر بهبود توانایی‌های شناختی و زیرمُؤلفه‌های آن از جمله توجه، حافظه، انعطاف‌پذیری شناختی، شناخت اجتماعی، تصمیم‌گیری و برنامه‌ریزی مؤثر است، می‌توان نتیجه‌گیری کرد که این مداخله به عنوان یک روش غیردارویی مؤثر، می‌تواند موجب بهبود توانایی‌های ورزشکاران رزمی کار به کار گرفته شود.

نکات بالینی و کاربردی در طب انتظامی: با توجه به نتایج پژوهش حاضر مبنی بر اثربخشی تحریک الکتریکی مغز بر بهبود توانایی‌های شناختی ورزشکاران رزمی کار، می‌توان این گونه مداخلات را در نیروهای نظامی به ویژه کارکنان رزمی کار به کار برد.

تشکر و قدردانی: نویسنده‌گان از آزمودنی‌های گرامی که در این پژوهش شرکت نمودند و از خدمات تمام کسانی که در به ثمر رسیدن این پژوهش ما را یاری نمودند، قدردانی می‌کنند.

تعارض منافع: بدین‌وسیله نویسنده‌گان مقاله تصریح می‌نمایند که هیچ‌گونه تعارض منافعی در قبال مطالعه حاضر وجود ندارد.

سهم نویسنده‌گان: نویسنده اول، ارائه ایده و طراحی مطالعه، جمع‌آوری و تفسیر داده‌ها؛ نویسنده دوم و سوم، جمع‌آوری و تفسیر داده‌ها. همه نویسنده‌گان در نگارش اولیه مقاله سهیم بوده و همه با تأیید نهایی مقاله حاضر، مسئولیت دقت و صحت مطالب مندرج در آن را می‌پذیرند.

منابع مالی: هیچ‌گونه حمایت مالی دریافت نشده است.

References

1. Sakamoto S, Takeuchi H, Ihara N, Ligao B, Suzukiwa K. Possible requirement of executive functions for high performance in soccer. *PLoS One*. 2018;13: e0201871. <https://doi.org/10.1371%2Fjournal.pone.0201871>
2. Hsu C. L, Best JR, Davis JC, Nagamatsu LS, Wang S, Boyd L A, et al. Aerobic exercise promotes executive functions and impacts functional neural activity among older adults with vascular cognitive impairment. *Br J Sports Med*. 2018;52(3):184–91. <https://doi.org/10.1136/bjsports-2016-096846>
3. Ajilchi B, Rahmani J, Zoghi L. Predication of mindfulness based on cognitive abilities and its sub-components in NAJA university's students. *J Police Med*. 2019;8(2):93-8. http://jpmmed.ir/files/site1/user_files_c1271c/ajilchi_b-A-10-864-1-2afe7b0.pdf
4. Nejati V. Cognitive abilities questionnaire: Development and evaluation of psychometric properties. *Adv Cogn Sci* 2013;15(2):11-9. https://icssjournal.ir/browse.php?a_id=289&sid=1&slc_lang=en
5. Scharfen HE, Memmert D. The relationship between cognitive functions and sport-specific motor skills in elite youth soccer players. *Front Psychol*. 2019;10:817-27. <https://doi.org/10.3389%2Fpsyg.2019.00817>
6. Moran A, Campbell M, Toner J. Exploring the cognitive mechanisms of expertise in sport: progress and prospects. *Psychol Sport Exerc*. 2019;42:8-15. <https://doi.org/10.1016/j.psychsport.2018.12.019>
7. Vestberg T, Reinebo G, Maurex, L, Ingvar M, Petrovic P. Core executive functions are associated with success in young elite soccer players. *PLoS One*. 2017;12(2):e0170845. <https://doi.org/10.1371/journal.pone.0170845>
8. Wagner H, Finkenzeller T, Würth S, von Duvillard S. P. Individual and team performance in team-handball: a review. *J Sport Sci Med*. 2014;13(4):808-16. <https://pubmed.ncbi.nlm.nih.gov/25435773/>
9. Williams AM, Ford P, Eccles DW, Ward P. Perceptu-

قشر پیش‌بیشانی بیان کرد که منجر به بهبود عملکرد شناختی می‌شود. تحریک الکتریکی مغز باعث تقویت تحریک‌پذیری در قشر پیش‌بیشانی می‌شود که شاید ناشی از افزایش سطح گلوتامات نیز باشد. این آینینه اسید، ارتباط بسیاری با حافظه و پاسخ به محرك، تکامل مغز، انعطاف‌پذیری سیناپسی و یادگیری دارد [۳۷]. در نهایت، اثرات تحریک الکتریکی فرا جمجمه‌ای مغز در ناحیه پیش‌بیشانی مغز به علت دارا بودن اثر تجمعی، می‌تواند تأثیر قابل توجهی در بهبود شاخص‌های شناختی مانند توجه، کنترل مهاری و حافظه فعال بگذارد [۳۸، ۳۹] که نقش کلیدی در عملکرد ورزشکاران رزمی کار دارد.

پژوهش حاضر با محدودیت‌هایی همراه بود از جمله: دسترسی محدود به نمونه پژوهش، استفاده از روش نمونه‌گیری در دسترس، عدم مقایسه پژوهش بر روی زنان و مردان. همچنین، عدم بررسی نشانگرهای مغزی پس از تحریک الکتریکی فرا جمجمه‌ای مغز از طریق روش‌های تصویربرداری عصبی جهت بررسی تغییرات مغزی نیز با توجه به پرهزینه بودن آن، امکان‌پذیر نبود. پیشنهاد می‌شود در پژوهش‌های آتی، گروه نمونه از بین جوامع دیگر و با استفاده از سایر روش‌های نمونه‌گیری انجام شود تا بتوان اطلاعات دقیق‌تری از توانایی‌های شناختی در ورزشکاران رزمی کسب کرد. علاوه بر این، پیشنهاد می‌شود پس از تحریک الکتریکی فرا جمجمه‌ای مغز، از روش‌های تصویربرداری عصبی چون fMRI استفاده شود تا از طریق آن بتوان تغییرات مغزی در ناحیه تحریک را بررسی کرد. در نهایت به روان‌شناسان و متخصصان پیشنهاد می‌شود، با توجه به نتایج این پژوهش و سایر پژوهش‌های انجام‌شده که حاکی از اثربخشی تحریک الکتریکی فرا جمجمه‌ای مغز بر بهبود توانایی‌های شناختی می‌شود، این روش به عنوان روشی مکمل برای ارتقای

al-cognitive expertise in sport and its acquisition: implications for applied cognitive psychology. *Appl. Cogn. Psychol.* 2011;25(3): 432-42. <http://dx.doi.org/10.1002/acp.1710>

10. Verburgh L, Scherder EJ, van Lange PA, Oosterlaan J. Executive functioning in highly talented soccer players. *PLoS One.* 2014;9:e91254. <https://doi.org/10.1371/journal.pone.0091254>
11. Romanenko V, Podrigalo L, Cynarski W, Rovnaya, O, Korobeynikova L, Goloha V, Robak I. A comparative analysis of the short-term memory of martial arts' athletes of different level of sportsmanship. *J Martial Anthropol.* 2020;20(3):18-24. <https://www.proquest.com/openview/72c8dce36d64eee7b-0fa69e5d17ae403/1?pq-origsite=gscholar&cbl=5371637>
12. Kazemi M, Casella C, Perri G. 2004 Olympic tae kwon do athlete profile. *J Can Chiropr Assoc.* 2009;53(2):144-52. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2686035/>
13. Piskorska E, Mieszkowski J, Kochanowicz A, Wędrowska E, Niespodzinski B, Borkowska A. Mental skills in combat sports -review of methods anxiety evaluation. *Archives of budo: health promotion and prevention* 2016, 12(1):e11279. <https://arch-budo.com/view/abstract/id/11279>
14. James LP, Haff GG, Kelly VG, & Beckman EM. Towards a determination of the physiological characteristics distinguishing successful mixed martial arts athletes: a systematic review of combat sport literature. *Sports Med.* 2016;46(10):1525-51. <https://doi.org/10.1007/s40279-016-0493-1>
15. Rinderer M, Bernero A. Mental skills training in martial arts. Dissertation. [Dublin] University Denver. 2017. 40p. https://digitalcommons.du.edu/cgi/viewcontent.cgi?article=1242&context=capstone_masters
16. Bandeira ID, Guimarães RS, Jagersbacher JG, Barreto TL, de Jesus-Silva JR, Santos SN et al. Transcranial direct current stimulation in children and adolescents with attention-deficit/hyperactivity disorder (ADHD) a pilot study. *J Child Neurol.* 2016;31(7):918-24. <https://doi.org/10.1177/0883073816630083>
17. Rajaei Poor MS, & Saeed Manesh M. The effectiveness of transcutaneous direct brain electrical stimulation (TDCS) on the memory of students with special learning disorders. *J Neuropsychol.* 2018;4(13):67-84. [Persian]. <https://dorl.net/dor/20.1001.1.24765023.1397.4.13.5.9>
18. Vicario CM, Salehinejad MA, Felmingham K, Martin G, Nitsche MA. A systematic review on the therapeutic effectiveness of non-invasive brain stimulation for the treatment of anxiety disorders. *Neurosci Biobehav Rev* 2019;96:219-31. <https://doi.org/10.1016/j.neubiorev.2018.12.012>
19. 19-Lefaucheur JP. A comprehensive database of published tDCS clinical trials (2005-2016). *Neurophysiol Clin.* 2016;46(6):319-98. <https://doi.org/10.1016/j.neucli.2016.10.002>
20. Mohajeri aval N, Narimani M, Sadeghi GH, Hajlou N. The effect of transcranial direct current stimulation (tDCS) on experiential avoidance and worry in people with general anxiety disorder. *Feyz.* 2019;23(4):371-9. [Persian]. <https://feyz.kaums.ac.ir/article-1-3832-en.html>
21. Elsner B, Kugler J, Pohl M, Mehrgolz J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. *Cochrane Database Syst Rev.* 2016;3(3): CD009645. <https://doi.org/10.1002/14651858.cd009645.pub3>
22. Taherifard M, Saeidmanesh M, Azizi M. The effectiveness of transcranial direct current stimulation on the anxiety and severity of stuttering in adolescents aged 15 to 18. *J Res Rehabil Sci.* 2020;16:224-31. [10.22122/JRRS.V16I0.3605](https://doi.org/10.22122/JRRS.V16I0.3605)
23. Nouhi M, Shahlaee J, Honari H, Ghafouri F. The role of talent identification management in martial arts. *New Trends Sport Manage.* 2019;7(26):1-19. <http://ntsmj.issma.ir/article-1-1134-en.html>
24. Delavar A. Theoretical and practical foundations of research in humanities and social sciences. *Roshd.* 2015. [Persian]. https://scholar.google.com/scholar?hl=fa&as_sdt=0,5&cluster=6743202502178855748
25. Mirzaei M, Hasani Abharian P, Meschi F, Sabet M. Effectiveness of combination therapy of computerized cognitive rehabilitation and transcranial direct current stimulation on the cognitive function in elderly. *EBNESINA.* 2021;22(4):47-59. https://ebnesina.ajaums.ac.ir/browse.php?a_id=915&slc_lang=en&sid=1&printcase=1&hbnr=1&hmb=1
26. Mousavi SA, Jarareh J, Mohammadiarya AR. Effectiveness of Transcranial direct current stimulation (TDCS) over the prefrontal cortex on cognitive function in the elderly with Alzheimer. *Rooyesh.* 2021;10(7):1-12. [http://dorl.net/dor/20.1001.1.2383353.1400.10.7.4.6](https://dorl.net/dor/20.1001.1.2383353.1400.10.7.4.6)
27. Ke Y, Wang N, Du J, Kong L, Liu S, Xu M, Ming D. The effects of transcranial direct current stimulation (tdcs) on working memory training in healthy young adults. *Front.* 2019;13:1-10. file:///C:/Users/1/Desktop/Downloads/fnnum-13-00019.pdf
28. Ciullo V, Spalletta G, Caltagirone C, Banaj N, Vecchio D, Piras F, Piras F. Transcranial direct current stimulation and cognition in neuropsychiatric disorders: systematic review of the evidence and future directions. *Neuroscientist.* 2021;27(3):285-309. <https://doi.org/10.1177/1073858420936167>
29. Cosmo C, DiBiasi M, Lima V, Grecco L, Collange M, MauroP et al. A systematic review of transcranial direct current stimulation effects in attention-deficit/hyperactivity disorder. *J Affect Dis.* 2020;1(276):1-13. <https://doi.org/10.1016/j.jad.2020.06.054>
30. Breitling C, Zaehle T, DannhauerM, Tegelbeckers J, FlechtnerH & Krauel K. Comparison between conventional and HD-tDCS of the right inferior frontal gyrus in children and adolescents with ADHD. *Clin Neurophysiol* 2020;131(5):1146-54. <https://doi.org/10.1016/j.clinph.2019.12.412>

۳۱. Naji A, Rahimian Boger A, Hasani Tabatabai S. Comparing the effectiveness of schema therapy and transcranial stimulation of the brain with electric current on food craving. *J Clin Psychol.* 2020;12(2):18-9. [Persian]. <https://doi.org/10.22075/jcp.2020.20089.1852>

۳۲. Das N, Spence JS, Aslan S, Vanneste S, Mudar R, Rackley A et al. Cognitive training and transcranial direct current stimulation in mild cognitive impairment: A randomized pilot trial. *Front Neurosci.* 2019;13:307. <https://doi.org/10.3389/fnins.2019.00307>

۳۳. Jung DH, Ahn SP, Pak ME, Lee JL, Jung YJ, Kim KB et al. Therapeutic effects of anodal transcranial direct current stimulation in a rat model of ADHD. *Elife.* 2020;9: e56359. <https://doi.org/10.7554/elife.56359>

۳۴. Wong H, Zaman R. Neurostimulation in treating ADHD. *Psychiatria Danubia* 2019, 31(3): 265-275.

۳۵. Anderson M. Prescription-strength gaming: ADHD treatment now comes in the form of a first-person racing game-[News]. *IEEE Spectrum.* 2020;57(8):9-10. <https://ieeexplore.ieee.org/document/9150542>

۳۶. Dubreuil-Vall L, Gomez-Bernal F, Villegas A, Cirillo P, Surman C, Ruffini G et al. tDCS to the left DLPFC improves cognitive control but not action cancellation in patients with ADHD: a behavioral and electrophysiological study. *MedRxiv.* 2020. <https://doi.org/10.1101/2020.01.13.20017335>

۳۷. Wang CSM, Cheng KS, Tang, CH, Hou NT, Chien PF, Huang YC. 314 -Effects of transcranial direct current stimulation (tDCS) on cognitive function in Alzheimer's dementia. *Int Psychogeriatr.* 2020;32(1):72. <https://doi.org/10.1017/S1041610220002148>

۳۸. Nitsche MA, Paulus W. Transcranial direct current stimulation -update 2011. *Restor Neurol Neurosci.* 2011;29(6):463-92. <https://doi.org/10.3233/rnn-2011-0618>

۳۹. Lawrence BJ, Gasson, N, Johnson AR, Booth L, Loftus AM. Cognitive training and transcranial direct current stimulation for mild cognitive impairment in Parkinson's disease: a randomized controlled trial. *Parkinsons Dis* 2018:1-12. <https://doi.org/10.1155/2018/4318475>