



## ORIGINAL ARTICLE

## OPEN ACCESS

### The Impact of the Covid-19 Pandemic on the Performance and Efficiency of Selected Military Hospitals: A Cross-Sectional Study

Ali Akbar Golmohammadi<sup>1</sup> PhD, Pouran Raeisi<sup>2</sup> PhD, Touraj Harati Khalilabad<sup>1\*</sup> PhD

<sup>1</sup>Research Center for Life & Health Sciences & Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran, Iran.  
<sup>2</sup>Department of Health Service Management, School of Management & Medical Information Services, Iran University of Medical Sciences, Tehran, Iran

## ABSTRACT

**AIMS:** The covid-19 pandemic was very impressive on the performance and efficiency of all healthcare centers. This study aimed to investigate the effect of the covid-19 epidemic on the performance and efficiency of the hospitals of the police by the Pabon Lasso model.

**MATERIALS AND METHODS:** This applied study is descriptive-analytical. This study was conducted in four non-specialized military hospitals using data from 2019 to 2021 in military hospitals in the cities of Tehran, Mashhad, and Kerman in Iran. The data relating to the functional indicators of bed occupancy percentage, average patient stay, and bed turnover rate were collected by referring to the medical records units of the hospitals. After comparing the standards of the Ministry of Health, the Pabon Lasso model was used to measure the performance. SPSS 22 software and paired t-tests were used to perform statistical analysis.

**FINDINGS:** The study's general results showed that the average bed occupancy rate and bed turnover in all hospitals before the covid-19 pandemic were 75% and 73%, respectively, which were higher than national standard and in favorable condition. Although after the pandemic of covid-19, the average occupancy of hospital beds and the length of stay of patients were 70% and 3.8 days, respectively, which were in poor condition and less than the national standard, and the results indicated a significant effect of the pandemic on hospital indicators ( $p<0.05$ ). Also, the results of examining the efficiency of hospitals using the Pabon Lasso model showed that two hospitals were in the efficient performance area before the pandemic. However, after the pandemic, all hospitals were in inefficient areas.

**CONCLUSION:** The Covid-19 pandemic harmed the performance and efficiency indicators of hospitals. Therefore, planning to improve performance indicators and increase the efficiency and effectiveness of hospital activities should be at the top of the plans.

**KEYWORDS:** Performance; Military Hospitals; COVID-19

#### How to cite this article:

Golmohammadi A, Raeisi P, Harati Khalil Abad T. *The Impact of the Covid-19 Pandemic on the Performance and Efficiency of Selected Military Hospitals: A Cross-Sectional Study.* J Police Med. 2022;11(1):e40.

#### \*Correspondence:

Address: Research center for life and Health sciences and Biotechnology of the Police, Valiasr Hospital, Valiasr Street, Tehran, Iran,  
 Postal Code: 1417944661  
 Mail: [Tourajharati@gmail.com](mailto:Tourajharati@gmail.com)

#### Article History:

Received: 03/10/2022  
 Accepted: 03/12/2022  
 ePublished: 21/12/2022

## 2 The Impact of the Covid19- Pandemic on the Performance and Efficiency of Selected Military Hospitals: A Cross-Sectional Study

### INTRODUCTION

Acute respiratory syndrome SARS-CoV-2, the cause of the Covid-19 pandemic, started in December 2019 in the city of Wuhan, China [1]. ... [2-5]. Iran, like other countries, was not spared from the epidemic of Covid-19, and on February 19, 2020, the first cases of Covid-19 were confirmed in the city of Qom [6, 7]. ... [8, 9]. One of the challenges of the Covid-19 disease is the health consequences caused by the epidemic of the disease. The increase in the number of people suffering from the disease and the consequent increase in the demand for medical services have caused the country's healthcare sector, especially hospitals, to face serious challenges [10]. ... [11-13]. In this way, with the Coronavirus and the reduction of routine hospital activities in the emergency and elective surgery departments, the specific income of hospitals has decreased sharply, so a decrease of 355 million dollars in the specific income of hospitals is predicted on March 2022. With the continuation of the disease process in the coming months, this decrease in hospital income will continue and will greatly limit the budget of the country's health system [14]. In the meantime, military hospitals have not been exempted from this rule and have faced challenges caused by increased costs, decreased performance, and lack of efficiency.

### AIM(S)

Since no study has analyzed the effects of the covid-19 epidemic on the operational status and efficiency of military hospitals, therefore, it is considered necessary to investigate this issue, which was analyzed in this study.

### RESEARCH TYPE

This applied study is descriptive-analytical using performance indicators.

### RESEARCH SOCIETY, PLACE & TIME

This study was conducted in 2019 and 2021 in four selected military hospitals affiliated with the Police of the Islamic Republic of Iran. The year 2019 was considered as the period before the epidemic of Covid-19 and 2021 was considered as the period after the epidemic of Covid-19.

### MATERIALS & METHODS

To make the study sample more homogeneous, all these hospitals were selected from non-specialized hospitals. To preserve the ethical aspects, the names of the hospitals were avoided and the names of the hospitals were indicated by numbers. After obtaining permission from the ethics committee and presenting the letter of introduction to the

investigated units, raw data was collected by referring to the statistics and medical records unit according to the forms of the new statistical system to extract the desired indicators. Standard formulas taken from the Ministry of Health and Medicine were used to calculate the indexes of bed occupancy percentage, bed turnover ratio, and the average length of hospitalization [10].

$$\text{Percentage of bed occupancy} = \frac{\text{Number of occupied beds-days}}{\text{Number of active beds - active days}} \times 100$$

$$\text{Bed turnover ratio} = \frac{\text{Total number of admissions}}{\text{Average number of active beds}}$$

$$\text{Average length of hospitalization} = \frac{\text{Number of beds-days}}{\text{The number of discharged and dead patients}}$$

In the following, after calculating the indicators in each hospital, the mentioned indicators were compared with the standard indicators of the Ministry of Health, Treatment, and Medical Education (**Table 1**) and were categorized into favorable, average, and unfavorable categories.

**Table 1**) performance indicators of hospitals and standards announced by the Ministry of Health [10]

| Index                                                             | Favorable     | medium | unfavorable  |
|-------------------------------------------------------------------|---------------|--------|--------------|
| Ratio of active to fixed beds (%)                                 | 75-80         | 60-74  | Less than 60 |
| Bed occupancy (%)                                                 | More than 70  | 60-70  | Less than 60 |
| Flat performance ratio                                            | More than 24  | 17-24  | Less than 17 |
| bed turnover interval (days)                                      | Less than 2   | 2-3    | More than 43 |
| Admission ratio per bed                                           | More than 24  | 17-24  | Less than 17 |
| Average patient stay (days)                                       | Less than 3.5 | 3.5-4  | More than 4  |
| The ratio of surgeries to the operating room (operations per day) | 4             | 2-4    | Less than 2  |
| The ratio of deaths to hospitalizations (%)                       | Less than 2   | 2-3    | More than 3  |

### ETHICAL PERMISSION

The checklist prepared for collecting data from hospitals was provided to the officials of different units and the necessary explanations and obligations were provided about maintaining the confidentiality of the received data.

### STATISTICAL ANALYSIS

After checking the normality of the data, the paired t-test was used in SPSS 17 software to compare performance indicators in two different years. In the following, using Excel 2019 program and the Pabon Lasso diagram, the efficiency and performance of hospitals were calculated and

compared. The horizontal axis of this rectangular diagram is the bed occupancy percentage and the vertical axis is the bed efficiency (bed turnover ratio). By calculating the weighted average of the bed occupancy rate and the bed turnover ratio of the hospital, the optimal level of these two indicators was obtained for the investigated hospitals and plotted in the corresponding graph so that, with the appearance of two intersecting lines, four areas appear in the graph. Then, by using the numerical value of the two desired indicators (bed occupancy rate and bed turnover ratio) for each hospital, their location and the area corresponding to each of the four areas of the chart were determined. In addition, in this diagram, the point of the average length of stay of the patients is determined from the connection of the coordinate point of the hospital to the center of the coordinate and extending to the opposite sides [14]. **Table 2** shows the characteristics of the four areas of the Pabon Lasso diagram.

### FINDING by TEXT

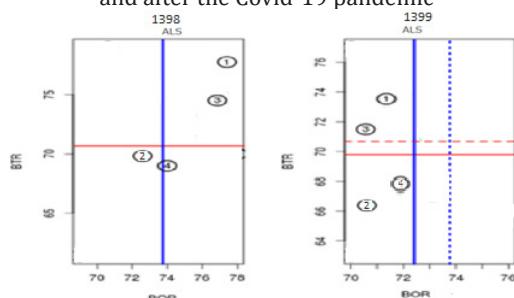
The average total index of bed occupancy percentage in 2019 and 2021 was 75% and 70.5%, respectively, which compared to the standards of the Ministry of Health (**Table 1**), were in favorable and average conditions, respectively (**Table 3**). Also, in both years, the highest percentage of bed occupancy was related to hospital "1" and the lowest percentage was related to hospital "2". In general, the bed occupancy rate in all hospitals decreased greatly during the period. The average index of patient stays in 2017 and 2018 was 3.5 and 3.8 days, respectively, which showed the unfavorable condition of hospitals compared to the existing standards. The maximum average stays of patients in hospital "4" is 4.3 days in 2021. Also, the lowest average length of stay was related to hospital "1" in 2019 (**Table 3**). The average bed turnover index in 2019 and 2021 was 70.6 and 69.8, respectively, the highest in both years was related to hospital "1" and the lowest in both years was related to hospital "4". Also, based on the results of the paired t-test, in two years, only the variables of the death rate and the average active bed had a significant change ( $p\text{-value}<0.05$ ) and there was no significant change in the other variables ( $p>0.05$  value); **Table 3**). In the following, the covid-19 epidemic was investigated on the performance of covered hospitals using the Pabon Lasso model. The results of the performance of hospitals in 2019 showed that among the hospitals studied, hospitals No. 1 and No. 3 were located in Region 4 (Northeastern Region of Tehran) (**Figure 1**). The hospitals located in this area had the best performance in terms of bed occupancy

Golmohammadi et. al

and bed turnover, and the level of efficiency was very high. In the same year, Hospital No. 2 and Hospital No. 4 were located in Region 2 (southwest region), and the results indicated low bed turnover and low bed occupancy. But in 2020 and after the Covid-19 disease, the results showed that all the hospitals covered by police, especially hospitals 1 and 3, were more affected and the performance of these hospitals has severely deteriorated (these hospitals in Region 3 (Northwest region in Tehran). As a result of the disease epidemic, the bed occupancy rate in these two hospitals decreased drastically and the performance of these hospitals was more affected by the ill effects of the disease epidemic (**Figure 1**).

**Table 2)** The four regions of the Pabon Lasso diagram

| District 3                                      | District 2                                                                                                                                                   |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low bed occupancy percentage, high bed turnover |                                                                                                                                                              |
| Bed occupancy percentage and high bed turnover  | Centers with high bed turnover (short-term hospitalization centers and obstetrics and gynecology hospitals)                                                  |
| Low idle beds work fairly well                  | High number of hospital beds<br>Little need for hospital expansion or building new hospitals on site                                                         |
| District 4                                      | District 1                                                                                                                                                   |
| High bed occupancy percentage, low bed turnover | Bed occupancy percentage and low bed turnover                                                                                                                |
| High proportion of severe diseases              | High number of beds and low demand for inpatient services                                                                                                    |
| Long-term and unnecessary hospitalization       | Little need for hospital expansion or building new hospitals on site<br>Lack of proper management and lack of motivation among employees, especially doctors |
| The prevalence of chronic diseases              | Not accepting patients or guiding and referring them to other centers                                                                                        |


**Table 3)** performance indicators obtained in military hospitals in 2019 and 2021

| Hospital | Variable                    | 2019 | 2021 | P-value |
|----------|-----------------------------|------|------|---------|
| (4)      | Bed occupancy percentage    | 74   | 71   | P<0.001 |
|          | Bed turnover rate           | 68   | 67   | 0.01    |
|          | Average patient stay (days) | 4    | 4.3  | 0.05    |
| (1)      | Bed occupancy percentage    | 79   | 71   | P<0.001 |
|          | Bed turnover rate           | 79   | 72   | 0.01    |
|          | Average patient stay (days) | 3    | 3.3  | 0.06    |
| (3)      | Bed occupancy percentage    | 77   | 70   | P<0.001 |
|          | Bed turnover rate           | 75   | 71   | 0.001   |
|          | Average patient stay (days) | 3.4  | 3.7  | 0.05    |
| (2)      | Bed occupancy percentage    | 73   | 70   | P<0.001 |
|          | Bed turnover rate           | 70   | 66   | 0.01    |
|          | Average patient stay (days) | 3.7  | 4    | 0.07    |

## The Impact of the Covid19- Pandemic on the Performance and Efficiency of Selected Military Hospitals: A Cross-Sectional Study

|                    |                             |     |     |         |
|--------------------|-----------------------------|-----|-----|---------|
| Average indicators | Bed occupancy percentage    | 75  | 70  | P<0.001 |
|                    | Bed turnover rate           | 73  | 69  | P<0.001 |
|                    | Average patient stay (days) | 3.5 | 3.8 | P<0.001 |

**Figure 1)** Pabon Lasso diagram and the performance and efficiency of hospitals in two time periods before and after the Covid-19 pandemic



### MAIN COMPARISON to the SIMILAR STUDIES

In this study, the index of bed occupancy percentage in the hospitals of this study in 2019 was higher than the desired level and the national average (70%), and these results are consistent with the study of Sadeghi Far et al. [15]. Also, in the study of Kavousi et al., in terms of bed occupancy index, 4 centers were in favorable condition, 2 centers were in average condition and 8 centers were in unfavorable condition [16]. Arzamani et al. have also shown in their study that the level of these indicators in the hospitals of North Khorasan province in Iran is higher than the national standard and they are in a favorable condition [17], which were not different from the performance indicators obtained in the present study. In some foreign studies, the bed occupancy rate was much higher than the results of the present study; for example, according to Zhu's study in Singapore, the average bed occupancy rate is reported to be nearly 90% [18]. Also, in a study conducted in a specialized hospital in Egypt, the results show that in the period under review (2004-2013), the bed occupancy rate increased from 54.3 to 86.3 [19]. Although in Uy's study conducted in hospitals in the capital of Cambodia, this coefficient was 58%, which was much lower than the results of the present study and was consistent with the results of the present study after the Covid-19 epidemic [20]. This difference could be due to lower public health care expenditures, ineffective management or hospitalization, and treatment of diseases with long stays. In the present study, the index of bed turnover and the distance of bed turnover were also in good condition compared to the standard before the Covid epidemic, but after the epidemic, these indicators were in a bad condition. In Joneidi et al.'s study, the index of bed turnover distance and average patient stay is in an unfavorable

situation, and other indicators are in a favorable situation or even some of them are at a level beyond the optimal level [21]. Although in some domestic and foreign studies, these indicators are far from the standard levels and are in an unfavorable situation [22, 23]. This difference can somehow be caused by the lack of demand and too many beds remaining empty, or there may be a defect in the procedure for accepting patients. Hence, solving these issues can improve the index of bed turnover in these hospitals. The results of the present study showed that the studied hospitals are not in favorable conditions in terms of the average indicators of patients' stay compared to the country's standard indicators. The results of this study were consistent with the results of Barfar et al. [24]. Kalhor et al. also showed in their study that in general hospitals, the average length of stay of patients was 4.3, 4.8, and 4.5 days, respectively, and they were not in a favorable condition [25]. Also, in a study conducted in public hospitals in Jordan by Ajlouni et al, long-term hospital stay is considered a serious challenge [26]. Although, unlike the present study, in other studies that included different hospitals in Iran, the results showed the average favorable condition of the patient's stay; accordingly, in the study by Arzamani et al. and the study by Sadeghifar et al., hospitals were in a favorable condition in terms of the average index of patient stay [15, 17]. In a study conducted by Pabon Lasso in Colombian hospitals, the average stay of patients in hospitals with less than 100 beds and more than 200 beds was 5.2 and 7.2 days, respectively [27]. According to the World Bank report, the average length of stay in Australia has been 14 days, Canada 12 days, Egypt 8 days, France 11 days, Germany 14 days, Italy 11 days, Japan 46 days, Sweden 8 days, England 10 days, and America 8 days [28]. Also, the examination of the performance indicators of hospitals in the two countries of India and Egypt showed that in the investigated periods, the average stay of patients was 6.3 and 7.75 days; however due to the lack of definition of standard level for each index, judging the performance of hospitals was associated with problems [19, 29]. Although in a study conducted by Iswanto in Indonesia, the average stay of patients was 2-3 days and was obtained at a satisfactory level [30], which difference could be due to the difference in the type of population covered by hospitals, the status of providing hospital services and the type and time of the study and finally the amount of public costs of care in the wards and hospitalization of patients with long stays. Regarding the comparison of the performance of hospitals based on the three indexes of bed occupancy percentage,

bed turnover rate, and average patient stay according to the location of the studied centers in the four areas of the Pabon Lasso diagram in 2019 and 2021, hospitals 2 and 4 were located in the same areas in both years and there was no difference in their performance, but hospitals 1 and 3 were located in the efficient area before the epidemic, but after the epidemic, these hospitals were placed in the inefficient area and area 2. In the first area of the diagram, there are centers with lower than average occupancy and bed turnover percentages, the number of beds is highly dependent on demand, and the hospital shows poor performance, in this study, hospitals 2 and 4 were located in this area after the epidemic. In Mohammadi et al.'s study and Hafidz's study, 36% and 37% of hospitals are located in this area, respectively [31, 32]. Also, in the study of Barfer et al., three hospitals are located in the first region [24]. Yousefzadeh et al. have also shown that 5, 4, 3, and 2 hospitals were located in this area from 2012 to 2015, respectively, and these results are consistent with the present study [33]. Also, by examining the foreign studies conducted by Nabukeera et al. and the study by Nwagbara Rasiah, the results show that 50 and 37 percent of hospitals are located in Region 1, respectively [23, 34]. Although in some studies, no hospitals were included in this area [25] which could be due to differences in the system and management style of the hospitals. The second area of the graph is dedicated to those centers that have a high bed turnover due to their specific type of activity (such as short-term hospitalization centers or maternity hospitals). In this study, after the epidemic, hospitals 1 and 3 were placed in Region 2, so it can be said that they did not have an acceptable efficiency in managing affairs, and it is recommended that the management of the center plan to improve the performance indicators and move the center to the region 3. Zahiri and Keliddar have shown in their study that 7 of the 26 hospitals studied were located in Region 2 [35]. Also, in the study of Mehr al-Hasani et al., 9 hospitals were located in this area [36]. In a study conducted by Iswanto in a medical center in Jakarta, Indonesia, during the investigated period, this medical center was located in the Region 2 of Pabon Lasso diagrams [30]. This hospital had a high bed turnover due to being a single specialty and an outpatient treatment center; for this reason, the performance results were similar to the present study. In the third area of the diagram, some hospitals have good efficiency; this means that these hospitals have reached the appropriate efficiency with the minimum number of beds used and have a favorable efficiency in the

Golmohammadi et. al

administration of affairs. The present study showed that in 2019 and before the epidemic, only hospitals 1 and 3 were located in Region 3. Bahadori et al and also Asbu et al., have shown in their study that 39 and 27 percent of hospitals, respectively, are located in Region 3 [22, 37]. Also, Sajadi et al. have shown that 45% of the hospitals they studied are located in Region 3 [7]. In a study conducted among the hospitals of Cairo in Egypt, the results show that during the period review (2006-2008), 46, 60, and 53 percent of the hospitals were located in this area [26]. In the study of Nabukeera et al., the study of Nwagbara and Rasiah, and the study of Hafidz et al., respectively, 20, 35.6 and 37 percent of hospitals were located in this area [23, 32, 34].

### SUGGESTIONS

It is suggested that future studies improve the performance indicators of hospitals by using modern quality approaches, especially six sigma which is based on increasing quality and reducing costs at the same time, to formulate clear and specific treatment methods and procedures to prevent possible infections that cause an increase in the average length of stay and the decrease in bed turnover. Also, for future research, it is suggested that this study be conducted in more periods and more hospitals.

### LIMITATIONS

In the current study, the lack of access to some financial indicators such as the cost of personal protective equipment and performance indicators such as deaths caused by Covid-19 in police hospitals, and also the lack of access to information on a larger number of hospitals covered by the police, were among the limitations of this research. It is suggested that in the future, by solving such cases, the foundation of new studies be done.

### CONCLUSIONS

The results of the present study are very useful for managers and policymakers of the health department of military hospitals who are looking for ways to improve performance and optimal use of resources in the field of treatment. By comparing the performance indicators with the standards and examining the performance of military hospitals using the Pabon Lasso model, in addition to knowing the amount of deviation from the standards, those inefficient hospitals with inappropriate performance were also identified. Therefore, the managers and employees of the police health department must take corrective measures about the hospitals that are in Region 1 (inefficient hospitals) and also the indicators that

6  
**The Impact of the Covid19- Pandemic on the Performance and Efficiency of Selected Military Hospitals: A Cross-Sectional Study**

are far from the standard levels, to find the root of the weakness and improve the performance. Also, by examining and evaluating the managerial and economic performance of efficient hospitals (hospitals located in Region 3) or other internal and external hospitals with optimal performance, the factors affecting success and desirability can be identified and by modeling these factors (adjusting different conditions hospital) to make progress as fast as possible in various therapeutic, economic and management indicators in police hospitals.

**Clinical & Practical Tips in Police Medicine**

Considering the adverse effects of the covid-19 epidemic on the performance and efficiency of selected police hospitals, crisis management, and proper planning at the level of the health department can have a significant effect in reducing the adverse effects of the covid-19 epidemic.

**Acknowledgments**

The authors thank the deputy of the health department of the police of the Islamic Republic of Iran and also all hospital personnel for their cooperation in conducting this research.

**Conflict of Interest**

The authors state that there is no conflict of interest in the present study.

**Funding Sources**

The present study is a part of the research project numbered "91000368" which was carried out with the financial support of the Police Command of the Islamic Republic of Iran.



## نشریه طب انتظامی

۶ دسترسی آزاد

مقاله اصیل

# تأثیر همه‌گیری کووید-۱۹ بر عملکرد و کارایی بیمارستان‌های منتخب نظامی: یک مطالعه مقطعی

علی‌اکبر گلمحمدی<sup>۱</sup>, PhD, پوران رئیسی<sup>۲</sup>, PhD, تورج هراتی خلیل‌آباد<sup>\*</sup>

<sup>۱</sup> مرکز تحقیقات علوم و فناوری‌های زیستی و سلامت پلیس، معاونت بهداشت، امداد و درمان، فرماندهی انتظامی، تهران، ایران.  
<sup>۲</sup> گروه مدیریت و خدمات بهداشتی و درمانی، دانشکده مدیریت و اطلاع‌رسانی پزشکی، دانشگاه علوم پزشکی ایران، تهران، ایران.

چکیده

**اهداف:** پاندمی کووید-۱۹، تأثیر بسیاری بر عملکرد و کارایی تمام مراکز بهداشت و درمان داشت. هدف از این پژوهش، بررسی تأثیر همه‌گیری کووید-۱۹ بر وضعیت عملکرد و کارایی بیمارستان‌های تحت پوشش فراجا توسط مدل پابن لاسو بود.

**مواد و روش‌ها:** مطالعه کاربردی حاضر از نوع توصیفی-تحلیلی است. این مطالعه در بین چهار بیمارستان غیرتخصصی نظامی و با استفاده از داده‌های سال‌های ۱۳۹۸ تا ۱۴۰۰ در بیمارستان‌های نظامی تحت پوشش فراجا در شهرهای تهران، مشهد، و کرمان انجام شد. داده‌های مربوط به شاخص‌های عملکردی درصد اشغال تخت، متوسط اقامت بیماران و میزان گردش تخت با مراجعه به واحدهای مدارک پزشکی بیمارستان‌ها جمع‌آوری شد و پس از مقایسه با استانداردهای وزارت بهداشت، جهت سنجش عملکرد از مدل پابن لاسو استفاده شد. از نرم افزار SPSS 22 و تی زوجی به منظور انجام تحلیل‌های آماری استفاده شد.

**یافته‌ها:** نتایج مطالعه نشان داد که به طور کلی، متوسط ضریب اشغال تخت و گردش تخت در تمامی بیمارستان‌ها قبل از همه‌گیری کووید به ترتیب ۷۵ درصد و ۷۳ درصد بود که از استاندارد کشوری بالاتر و در وضعیت مطلوب بودند. اگرچه بعد از همه‌گیری کووید-۱۹ متوسط اشغال تخت بیمارستان‌ها و طول اقامت بیماران به ترتیب ۷۰ درصد و ۳/۸ روز به دست آمد که در وضعیت نامناسب و پایین‌تر از استاندارد کشوری قرار داشتند و نتایج حاکی از تأثیر معنادار همه‌گیری بر شاخص‌های بیمارستانی بود ( $p < 0.05$ ). همچنین نتایج حاصل از بررسی کارایی بیمارستان‌ها توسط مدل پابن لاسو نشان داد که در دوره قبل از همه‌گیری، دو بیمارستان در ناحیه عملکرد کارا قرار داشتند اما بعد از همه‌گیری تمامی بیمارستان‌ها در ناحیه غیرکارا قرار گرفتند.

**نتیجه‌گیری:** همه‌گیری کووید-۱۹ تأثیر منفی بر شاخص‌های عملکرد و کارایی بیمارستان‌ها داشته است. لذا توصیه می‌شود برنامه‌ریزی جهت بهبود شاخص‌های عملکردی و همچنین افزایش کارایی و اثربخششدن فعالیت‌های بیمارستانی در رأس برنامه‌ها قرار گیرند.

**کلیدواژه‌ها:** کارایی، بیمارستان‌های نظامی، کووید-۱۹

تاریخچه مقاله:

دربافت: ۱۴۰۱/۰۷/۱۱  
پذیرش: ۱۴۰۱/۰۷/۱۲  
انتشار: ۱۴۰۱/۰۹/۳

نویسنده مسئول\*

آدرس پستی: تهران، خیابان ولی‌عصر، بالاتر از میدان ونک، بیمارستان خضرت ولی‌صراعج، مرکز تحقیقات علوم و فناوری‌های زیستی و سلامت پلیس، کد پستی: ۱۴۱۹۹۴۶۶۱  
پست الکترونیکی: Tourajharati@gmail.com

نحوه استناد به مقاله:

Golmohammadi A, Raeisi P, Harati Khalil Abad T. *The Impact of the Covid-19 Pandemic on the Performance and Efficiency of Selected Military Hospitals: A Cross-Sectional Study.* J Police Med. 2022;11(1):e40.

## مقدمه

بیمارستان‌ها بسته‌شده در بیمارستان‌ها شده است و درنتیجه بیمارستان‌ها با بار سنگین تأمین تجهیزات درمانی و تشخیصی روبرو شده‌اند. متاسفانه، شدیدتر شدن علایم بیماران و خامت حال آنها استفاده از تجهیزات تنفسی همچون ونتیلاتورها را طلب می‌نماید و با افزایش موارد بدهال، بیمارستان‌ها فشار سنگینی را در جهت تأمین دستگاه‌ها متحمل می‌شوند [۱۰، ۱۱].

از سوی دیگر با توجه به دوره نهفتگی (Incubation) بالای این بیماری و به منظور جلوگیری از افزایش تعداد موارد ابتلا در محیط بیمارستان، بسیاری از بیمارستان‌ها از ارائه خدمات غیراورژانسی و درمان‌های انتخابی صرف‌نظر کرده‌اند. بر این اساس، بسیاری از عمل‌های غیراورژانسی در بیمارستان‌ها موقوف شدند. بر اساس گزارش انجام‌شده توسط آژانس تحقیق و کیفیت در خدمات بهداشتی در سال ۲۰۱۴، بیش از ۳۰ درصد از درآمد حاصل‌شده از ارائه خدمات بسته‌شده در بیمارستان، ناشی از خدمات و درمان‌های انتخابی است [۱۲]. بر اساس مطالعه *Hugh Mc Bister* ها و درمان‌های انتخابی، درآمد زیادی بیشتری نسبت به بسته‌های اورژانسی دارند، به گونه‌ای که هر بسته انتخابی، ۷۰۰ دلار درآمد بیشتر نسبت به عمل و بسته اورژانسی برای بیمارستان ایجاد می‌کند [۱۳]. از این رو، تغییر نوع ارائه خدمات و تغییر آن از انتخابی به صرفاً اورژانسی منجر به کاهش حجم ارائه خدمات و به تبع آن بلاستفاده ماندن بخش عظیمی از سرمایه‌های بیمارستان‌ها شده است که این علاوه بر کاهش چشمگیر درآمدهای اختصاصی، از دیدگاه اقتصادانان سلامت، منجر به افزایش هزینه فرصت برای بیمارستان‌ها شده است [۱۰].

بدین ترتیب با شیوع کرونا و کاهش فعالیت‌های روتین بیمارستانی در بخش‌های جراحی اورژانس و انتخابی، درآمد اختصاصی بیمارستان‌ها به شدت کاهش پیدا کرده است، به طوری که برای فرودین‌ماه سال ۱۴۰۱ کاهشی معادل ۱۵۰۰ میلیارد تومان در درآمدهای اختصاصی بیمارستان‌ها پیش‌بینی شده است. با ادامه روند بیماری در ماه‌های آینده، این کاهش درآمد بیمارستانی همچنان ادامه خواهد داشت و بودجه نظام سلامت کشور را بسیار محدود خواهد نمود [۱۴]. در این بین، بیمارستان‌های نظامی نیز از این قاعده مستثنی نبوده‌اند و با چالش‌های ناشی از افزایش هزینه، کاهش عملکرد و عدم کارایی روبرو شده‌اند. از آنجا که تا کنون مطالعه‌ای، اثرات همه‌گیری بیماری کووید-۱۹ بر وضعیت عملکردی و کارایی بیمارستان‌های نظامی را مورد تحلیل قرار نداده است، لذا بررسی این مهم امری ضروری محسوب می‌شود که در این مطالعه مورد تحلیل واقع شد.

## مواد و روش‌ها

این مطالعه کاربردی، به صورت توصیفی-تحلیل با استفاده

سندرم حاد تنفسی 2-CoV-SARS- عامل پاندمی کووید-۱۹، از دسامبر ۲۰۱۹ از شهر ووهان چین شروع شده است. منشأ ویروس ناشناخته است و در برخی موارد آن را به بازار فروش غذاهای دریایی که می‌توان حیوانات وحشی مثل خفاش را خریداری کرد، نسبت داده‌اند [۱]. انتقال ویروس از طریق مواجهه با قطرات تنفسی فرد مبتلا یا از طریق استنشاق و مواجهه با شی آلوده به قطرات تنفسی بیمار و سپس لمس دهان، بینی و چشم‌هاست [۲]. این بیماری دارای علایمی همچون تب، سرفه، تنگی نفس، درد قفسه سینه، گیجی، تهوع و استفراغ، میالژی، اسهال و هموپترزی است [۳، ۴].

کووید-۱۹ به سرعت به یک وضعیت اضطراری در دنیا مبدل شد [۵] و در یک دوره کمتر از ۵ ماه در ۲۵ آوریل ۲۰۲۰ تعداد مبتلایان به ویروس کووید-۱۹ در دنیا به بیش از ۲/۸ میلیون نفر و تعداد جان‌باختگان به حدود ۴۰۰ هزار نفر رسید. اگرچه فعالیت‌های بهداشتی و درمانی زیادی از زمان شروع همه‌گیری کووید-۱۹ انجام شده است، اما هنوز هم بیماری در حال گسترش است و تعداد افراد مبتلا با شرایط و خیم زیاد است [۶، ۷]. ایران نیز همچون سایر کشورها، از همه‌گیری بیماری کووید-۱۹ در امان نماند و در تاریخ ۱۹ فوریه ۲۰۲۰ اولین موارد بیماری کووید-۱۹ در شهر قم تأیید شدند و پس از آن بیماری به سرعت در استان‌های هزار نفر و تعداد فوتی‌ها از مرز ۷۳۰۰ تن گذشت [۷].

با توجه به روند رو به رشد بیماری در کشور، بیماری کووید تأثیرات قابل ملاحظه‌ای بر کل جامعه بر جای گذاشته است و در صورت عدم ارائه راهکارهای جدی و اثربخش، این تأثیرات سوء ادامه‌دار خواهد بود. از رونق افتادن و حتی تعطیلی بسیاری از مشاغل از یک سو و از سوی دیگر اثرات روحی و روانی ناشی از استرس ابتلا به بیماری امروزه چالش جدی در تمامی دنیا و حتی ایران قلمداد می‌گردد [۹]. یکی دیگر از چالش‌ها، پیامدهای بهداشتی ناشی از همه‌گیری بیماری است. اثرات بهداشتی همچون مرگ و میر و بسترهای شدن ناشی از کووید، بار سنگین بر کشور به ویژه در بخش بهداشت، بر جای گذاشته است. افزایش تعداد افراد مبتلا به بیماری و به تبع آن افزایش تقاضا برای خدمات درمانی، موجب گردیده که بخش بهداشت درمانی کشور، به ویژه بیماری‌زایی سرایت و انتقال بالا و همچنین قدرت بالای بیماری‌زایی این ویروس، درمان و مراقبت از این بیماران، نیاز ضروری به استفاده از تجهیزات محافظت فردی، تجهیزات تشخیصی، تست‌های آزمایشگاهی و داروهای خاصی را طلب می‌نماید. لذا افزایش تعداد افراد مبتلا در کشور منجر به افزایش

## تأثیر همه‌گیری کووید-۱۹ بر عملکرد و کارایی بیمارستان‌های منتخب نظامی: یک مطالعه مقطعی

می‌شود [۱۴]. جدول شماره ۲ ویژگی‌های چهار ناحیه نمودار پابن لاسو را نشان می‌دهد.

### یافته‌ها

میانگین کل شاخص درصد اشغال تخت در سال ۱۳۹۸ و ۱۴۰۰ به ترتیب ۷۵ درصد و ۷۰/۵ درصد به دست آمد که در مقایسه با استانداردهای وزارت بهداشت (جدول ۱)، به ترتیب در وضعیت مطلوب و متوسط قرار داشتند (جدول ۳). همچنین در هر دو سال بیشترین درصد اشغال تخت مربوط به بیمارستان «۱» و کمترین درصد مربوط به بیمارستان «۲» بود. بهطور کلی ضریب اشغال تخت در تمامی بیمارستان‌ها کاهش زیادی در طول دوره زمانی داشت. شاخص متوسط اقامت بیمار در سال ۱۳۹۶ و ۱۳۹۷ داشت. شاخص متوسط اقامت بیمار در سال ۱۳۹۷ و ۱۳۹۸ داشت. شاخص متوسط اقامت مربوط به بیمارستان «۱» به ترتیب ۳/۵ و ۳/۸ روز به دست آمد که در مقایسه با استانداردهای موجود، وضعیت نامطلوب بیمارستان‌ها را نشان داد. بیشترین متوسط اقامت بیماران مربوط به بیمارستان «۴» به اندازه ۴/۳ روز در سال ۱۴۰۰ است. همچنین کمترین متوسط اقامت مربوط به بیمارستان «۱» در سال ۱۳۹۸ بود (جدول ۳).

جدول ۱) شاخص‌های عملکردی بیمارستان‌ها و استانداردهای اعلامی وزارت بهداشت [۱۵]

| نامطلوب    | متوسط    | مطلوب       | نوع شاخص                                  |
|------------|----------|-------------|-------------------------------------------|
| کمتر از ۶۰ | ۷۴ تا ۶۰ | ۸۰ تا ۷۵    | نسبت تخت فعال به ثابت (%)                 |
| کمتر از ۶۰ | ۷۰ تا ۶۰ | بیشتر از ۷۰ | اشغال تخت (%)                             |
| کمتر از ۱۷ | ۲۴ تا ۱۷ | بیشتر از ۲۴ | نسبت عملکرد تخت                           |
| ۳          | ۲ تا ۲   | کمتر از ۲   | فاصله چرخش تخت (روز)                      |
| کمتر از ۱۷ | ۲۴ تا ۱۷ | بیشتر از ۲۴ | نسبت پذیرش به ازای هر تخت                 |
| بیشتر از ۴ | ۴ تا ۳/۵ | کمتر از ۳/۵ | متوسط اقامت بیمار (روز)                   |
| کمتر از ۲  | ۴ تا ۲   | ۴           | نسبت اعمال جراحی به اتاق عمل (عمل در روز) |
| بیشتر از ۳ | ۲ تا ۲   | کمتر از ۱   | نسبت فوت‌شدگان به بسترندهای شدگان (%)     |

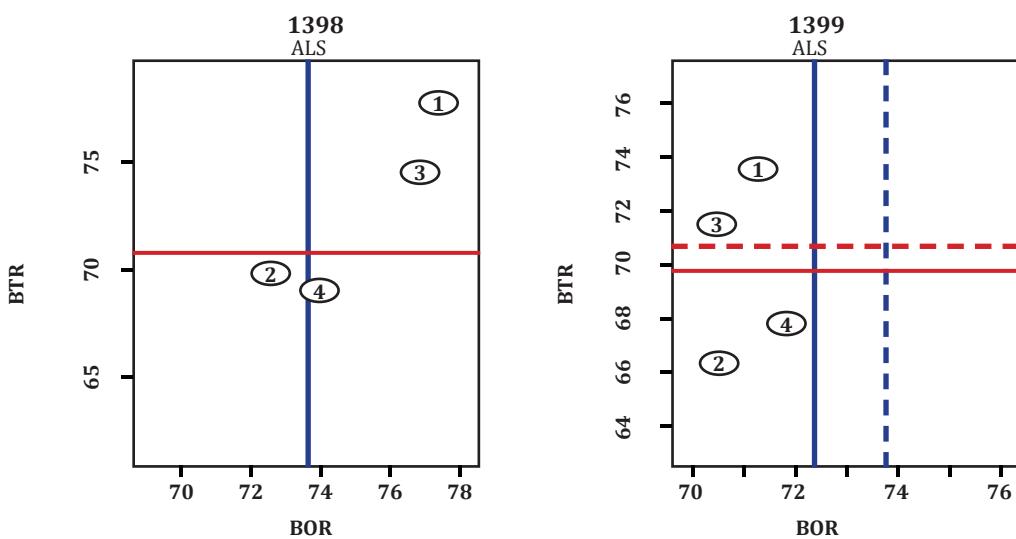
جدول ۲) چهار ناحیه نمودار پابن لاسو

| ناحیه ۲                                                                             | ناحیه ۳                         | ناحیه ۴                         |
|-------------------------------------------------------------------------------------|---------------------------------|---------------------------------|
| درصد اشغال تخت پایین، چرخش تخت بالا                                                 | درصد اشغال تخت و چرخش تخت بالا  | درصد اشغال تخت و چرخش تخت بالا  |
| مراکز دارای گردش تخت بالا (مراکز بسترندهای کوتاه‌مدت و بیمارستان‌های زنان و زایمان) | تختهای بدون استفاده پایین       | تختهای بدون استفاده پایین       |
| زیادبودن تعداد تخت‌های بیمارستانی                                                   | نسبتاً خوب کار                  | نسبتاً خوب کار                  |
| نیاز اندک به توسعه بیمارستان یا ایجاد بیمارستان‌های جدید در محل                     | می‌کنند                         | می‌کنند                         |
| ناحیه ۱                                                                             | ناحیه ۴                         | ناحیه ۴                         |
| درصد اشغال تخت و چرخش تخت پایین                                                     | درصد اشغال تخت بالا             | درصد اشغال تخت بالا             |
| زیادبودن تعداد تخت و پایین‌بودن تقاضا برای خدمات بسترندهای پایین                    | نسبت تخت پایین بالا             | نسبت تخت پایین بالا             |
| نیاز اندک به توسعه بیمارستان یا ایجاد بیمارستان‌های جدید در محل                     | بیماری‌های شدید                 | بیماری‌های شدید                 |
| عدم مدیریت صحیح و عدم وجود انگیزه در کارکنان به خصوص پزشکان                         | بسترندهای طولانی مدت و غیرضروری | بسترندهای طولانی مدت و غیرضروری |
| عدم پذیرش بیماران یا هدایت و ارجاع آنان به مراکز دیگر                               | مزن                             | مزن                             |

جدول ۳) شاخص‌های عملکردی به دست آمده در بیمارستان‌های نظامی

از شاخص‌های عملکردی در دو مقطع زمانی سال‌های ۱۳۹۸ و ۱۴۰۰ در چهار بیمارستان منتخب نظامی وابسته به فرماندهی انتظامی جمهوری اسلامی ایران انجام شد. مقطع زمانی سال ۱۳۹۸ به عنوان مقطع زمانی قبل از همه‌گیری کووید-۱۹ و مقطع زمانی ۱۴۰۰ به عنوان مقطع زمانی بعد از همه‌گیری کووید-۱۹ در نظر گرفته شد. به منظور همگن‌تر بودن نمونه مطالعه، تمامی این بیمارستان‌ها از بین بیمارستان‌های غیرتخصصی انتخاب شدند. جهت حفظ جنبه‌های اخلاقی، از ذکر اسامی بیمارستان‌ها خودداری گردید و نام بیمارستان‌ها با عدد مشخص شد. پس از کسب مجوز از کمیته اخلاق و ارائه معرفی‌نامه به واحد آمار و مدارک پژوهشی، اطلاعات خام با مراجعه به واحد آمار و مدارک مورد بررسی، اطلاعات خام با مراجعه به واحد آمار و مدارک پژوهشی مطابق فرم‌های نظام نوین آماری جهت استخراج شاخص‌های مورد نظر جمع‌آوری گردید. جهت محاسبه شاخص‌های درصد اشغال تخت، نسبت گردش تخت و میانگین مدت بسترندهای استاندارد برگرفته از وزارت بهداشت و درمان استفاده شد [۱۰].

= درصد اشغال تخت


= نسبت گردش تخت

= میانگین مدت بسترندهای

در ادامه پس از محاسبه شاخص‌ها در هر بیمارستان، شاخص‌های مذکور با شاخص‌های استاندارد وزارت بهداشت، درمان و آموزش پژوهشی (جدول ۱) مقایسه و در طبقه‌های مطلوب، متوسط و نامطلوب دسته‌بندی شدند. ملاحظات اخلاقی: چکلیست تهیه شده جهت جمع‌آوری داده‌ها از بیمارستان‌ها در اختیار مسئولین واحدهای مختلف قرار داده شد و توضیحات و تعهدات لازم در رابطه با حفظ محرمانگی داده‌های دریافت شده ارائه شد. تجزیه و تحلیل آماری داده‌ها: پس از بررسی نرمال بودن داده‌ها، جهت مقایسه شاخص‌های عملکردی در دو سال مختلف از آزمون تی زوجی در نرم افزار SPSS 17 استفاده شد. در ادامه با استفاده از برنامه Excel 2019 و نمودار پابن لاسو، کارایی و عملکرد بیمارستان‌ها محاسبه و مقایسه شد. محور افقی این نمودار مستطیلی شکل، درصد اشغال تخت و در محور عمودی آن بازده تخت (نسبت چرخش تخت) قرار دارد. با استفاده از محاسبه میانگین وزنی ضریب اشغال تخت و نسبت گردش تخت مربوط به بیمارستان، میزان مطلوب این دو شاخص برای بیمارستان‌های مورد بررسی به دست آمد و در نمودار مربوطه رسم گردید تا بدین ترتیب، با پیدایش دو خط متقطع، چهار ناحیه در نمودار پیدار گردد. سپس، با استفاده از مقدار عددی دو شاخص مورد نظر (ضریب اشغال تخت و نسبت گردش تخت) برای هر بیمارستان، موقعیت آنها و ناحیه مربوط به هر یک از نواحی چهارگانه نمودار مشخص شد. ضمن این که در این نمودار از اتصال نقطه مختصات بیمارستان به مرکز مختصات و امتداد تا اضلاع مقابل، نقطه میانگین مدت اقامت بیماران مشخص

آزمون تی زوجی، در دو سال متمادی تنها متغیرهای میزان نرخ مرگ و میر و میانگین تخت فعال تغییر معناداری داشتند ( $p < 0.05$ ) و در سایر متغیرها هیچ گونه تغییر معناداری وجود نداشت ( $p > 0.05$ ; جدول ۳) در ادامه، به بررسی همه گیری بیماری کووید-۱۹ بر عملکرد بیمارستان‌های تحت پوشش با استفاده از مدل پابن لاسو پرداخته شد. نتایج حاصل از عملکرد بیمارستان‌ها در سال ۱۳۹۸ نشان داد که در بین بیمارستان‌ها مطالعه، بیمارستان‌های شمال شماره ۱ و شماره ۳ در منطقه ۴ (ناحیه شمال شرقی) قرار گرفتند (شکل ۱). بیمارستان‌های قرارگرفته شده در این ناحیه، بهترین عملکرد از نظر اشغال تخت و گردش تخت را داشتند و سطح کارایی بسیار بالا بود. در همین سال، بیمارستان شماره ۲ و بیمارستان شماره ۴ در منطقه ۲ (ناحیه جنوب غربی) قرار گرفتند که نتایج حاکی از گردش تخت پایین و اشغال تخت پایین بود. اما در سال ۱۳۹۹ و بعد از شیوع بیماری کووید-۱۹، نتایج نشان داد که تمامی بیمارستان‌های تحت پوشش فراجا، به ویژه بیمارستان‌های ۱ و ۳ تحت تأثیر بیشتری قرار گرفتند و عملکرد این بیمارستان‌ها به شدت در شرایط بدتری قرار گرفت (این بیمارستان‌ها در ناحیه ۳ قرار گرفتند (ناحیه شمال غربی)). در اثر همه گیری بیماری، ضریب اشغال تخت در این دو بیمارستان به شدت کاهش یافت و عملکرد این بیمارستان‌ها تأثیر بیشتری از اثرات سوء همه گیری بیماری گرفت (شکل ۱).

شکل ۱) نمودار پابن لاسو و وضعیت عملکرد و کارایی بیمارستان‌ها در دو مقطع زمانی قبل و بعد از همه گیری کووید-۱۹



بیمارستان‌ها پرداخته شد. با مقایسه شاخص‌های عملکردی بیمارستان‌های تحت مطالعه با استانداردهای کشوری در هر دو سال، نتایج نشان داد که قبل از همه گیری کووید-۱۹ بیمارستان‌ها در برخی از شاخص‌ها در وضعیت مطلوبی از استاندارد قرار داشتند؛ شاخص درصد اشغال تخت در بیمارستان‌های این مطالعه در سال ۱۳۹۸

|             |          | در سال ۱۳۹۸ و ۱۴۰۰ |                         | متغیر         | بیمارستان |
|-------------|----------|--------------------|-------------------------|---------------|-----------|
| P-value     | سال ۱۴۰۰ | سال ۱۳۹۸           |                         |               |           |
| $p > 0.001$ | ۷۱       | ۷۴                 | درصد اشغال تخت          |               |           |
| $0.01$      | ۶۷       | ۶۸                 | میزان گردش تخت          | (۴)           |           |
| $0.05$      | ۴۳       | ۴                  | متوسط اقامت بیمار (روز) |               |           |
| $p > 0.001$ | ۷۱       | ۷۹                 | درصد اشغال تخت          |               |           |
| $0.01$      | ۷۲       | ۷۹                 | میزان گردش تخت          | (۱)           |           |
| $0.06$      | ۳۳       | ۳                  | متوسط اقامت بیمار (روز) |               |           |
| $p > 0.001$ | ۷۰       | ۷۷                 | درصد اشغال تخت          |               |           |
| $0.01$      | ۷۱       | ۷۵                 | میزان گردش تخت          | (۳)           |           |
| $0.05$      | ۳۷       | ۳۴                 | متوسط اقامت بیمار (روز) |               |           |
| $p > 0.001$ | ۷۰       | ۷۳                 | درصد اشغال تخت          |               |           |
| $0.01$      | ۶۶       | ۷۰                 | میزان گردش تخت          | (۲)           |           |
| $0.07$      | ۴        | ۳۷                 | متوسط اقامت بیمار (روز) |               |           |
| $p > 0.001$ | ۷۰       | ۷۵                 | درصد اشغال تخت          |               |           |
| $p > 0.001$ | ۶۹       | ۷۳                 | میزان گردش تخت          | متوسط شاخص‌ها |           |
| $p > 0.001$ | ۳۸       | ۳۵                 | متوسط اقامت بیمار (روز) |               |           |

متوسط شاخص گردش تخت در سال ۱۳۹۸ و ۱۴۰۰ به ترتیب  $70/6$  و  $69/8$  بود که بیشترین در هر دو سال، مربوط به بیمارستان «۱» و کمترین در هر دو سال مربوط به بیمارستان «۴» بود. همچنین بر اساس نتایج حاصل از

بحث پژوهش حاضر با هدف بررسی عملکرد و کارایی بیمارستان‌های نظامی وابسته به فرماندهی انتظامی جمهوری اسلامی ایران در شهر تهران، کرمان و مشهد انجام شد. با استفاده از شاخص‌های استاندارد و مدل پابن لاسو به ارائه شناختی کلی از کارایی و وضعیت

گرددش تخت در این بیمارستان‌ها را بهبود بخشد. نتایج مطالعه حاضر نشان داد که بیمارستان‌های مورد مطالعه نسبت به شاخص‌های استاندارد کشودی از لحاظ شاخص‌های متوسط اقامت بیماران در شرایط مساعدی قرار ندارند. نتایج این مطالعه با نتایج مطالعه برفر و همکاران همخوانی داشت [۲۴]. کلهر و همکاران نیز در مطالعه خود نشان داده‌اند که در بیمارستان‌های عمومی میانگین مدت اقامت بیماران به ترتیب  $4/8$ ،  $4/3$  و  $4/5$  روز بوده است که در وضعیت مطلوبی قرار نداشته‌اند [۲۵]. همچنین در مطالعه‌ای که در بیمارستان‌های عمومی انجام شده است، کشور اردن توسط *Ajlouni* و همکارانش انجام شده است، اقامت بلندمدت بیمارستان‌ها، چالش جدی محسوب می‌شود [۲۶]. اگرچه بر خلاف مطالعه حاضر، در سایر مطالعات که بیمارستان‌های مختلف کشور ایران را در بر می‌گرفت، نتایج وضعیت مساعد متوسط اقامت بیماران را نشان می‌داد؛ بر همین اساس در مطالعه از زمانی و همکاران و مطالعه صادقی‌فر و همکاران بیمارستان‌ها از لحاظ شاخص متوسط اقامت بیماران در وضعیت مطلوبی قرار داشتند [۱۵، ۱۷]. در مطالعه‌ای که توسط پابن لوسو در بیمارستان‌های کلمبیا انجام شده نیز متوسط اقامت بیماران در بیمارستان‌های با تعداد تخت کمتر از  $100$  و بیشتر از  $200$  به ترتیب  $5/2$  و  $7/2$  روز به‌دست آمده است [۲۷]. بر اساس گزارش بانک جهانی، شاخص متوسط مدت اقامت در استرالیا  $14$  روز، کانادا  $12$  روز، مصر  $8$  روز، فرانسه  $11$  روز، آلمان  $14$  روز، ایتالیا  $11$  روز، زاپن  $46$  روز، سوئیس  $8$  روز، انگلستان  $10$  روز و آمریکا  $8$  روز بوده است [۲۸]. همچنین، بررسی شاخص‌های عملکردی بیمارستان‌ها در دو کشور هند و مصر نشان داد که در دوره‌های بررسی شده، متوسط اقامت بیماران  $6/3$  و  $7/75$  روز بوده است؛ اما با توجه به عدم تعریف سطح استاندارد برای هر شاخص، قضایت در مورد عملکرد بیمارستان‌ها با مشکلاتی همراه بود [۱۹، ۲۹]. اگرچه در مطالعه‌ای که توسط *Iswanto* در اندونزی انجام شده، متوسط اقامت بیماران  $2-3$  روز و در سطح قضایت‌بخش به‌دست آمده است [۳۰] که این تفاوت می‌تواند به دلیل تفاوت در نوع جمعیت تحت پوشش بیمارستان‌ها، وضعیت ارائه خدمات بیمارستانی و نوع و زمان مطالعه و سرانجام میزان هزینه‌های عمومی مراقبت در بخش‌ها و بسترهای کردن بیماران با اقامت طولانی باشد. در دوره‌های ابتدایی همه‌گیری کووید، با توجه به عدم تجربه کافی کادر درمان در رابطه با مدیریت بیماران مبتلا، عدم وجود دستورالعمل پذیرفته شده استاندارد در درمان بیماران و همچنین عدم وجود امکانات کافی درمانی، دوره درمان بیماران بسترهای افزایش پیدا کرده بود که این به نوبه خود منجر به افزایش مدت اقامت بیماران در بیمارستان‌های کشور شده بود. همچنین، عوامل رایجی همچون طولانی‌شدن پروسه‌های مختلف در بخش‌های پذیرش، داخل بخش‌ها و پاراکلینیک‌ها، همگی موجب

بالاتر از سطح مطلوب و میانگین کشوری ( $70\%$ ) قرار داشت که این نتایج با مطالعه صادقی‌فر و همکاران همخوانی دارند [۱۵]. همچنین در مطالعه کاوسی و همکاران از نظر شاخص اشغال تخت،  $4$  مرکز در وضعیت مطلوب،  $2$  مرکز در وضعیت متوسط و  $8$  مرکز در وضعیت نامطلوب قرار داشتند [۱۶]. از زمانی و همکاران نیز در مطالعه خود نشان داده‌اند که میزان این شاخص‌ها در بیمارستان‌های استان خراسان شمالی در کشور ایران بیشتر از استاندارد کشودی است و در وضعیت مطلوبی قرار دارند [۱۷] که با شاخص‌های عملکردی به‌دست آمده در مطالعه حاضر تفاوتی نداشتند. در برخی از مطالعات خارجی نیز ضریب اشغال تخت خیلی بالاتر از نتایج مطالعه حاضر بود؛ به عنوان مثال بر اساس مطالعه *Zhu* در کشور سنگاپور، متوسط ضریب اشغال مطالعه ای که در یک بیمارستان تخصصی در کشور مصر انجام شده است، نتایج نشان می‌دهد که در دوره زمانی مورد بررسی ( $2013-2004$ )، ضریب اشغال تخت از  $54/3$  به  $86/3$  افزایش پیدا کرده است [۱۹]. اگرچه در مطالعه *Uy* که در بیمارستان‌های پایتخت کشور کامبوج انجام شده، این ضریب  $58\%$  به‌دست آمده است که بسیار پایین‌تر از نتایج مطالعه حاضر بود و با نتایج مطالعه حاضر بعد از همه‌گیری کووید-۱۹ همخوانی داشت [۲۰]. این تفاوت می‌تواند به علت کاهش هزینه‌های سرانه عمومی مراقبت سلامت، مدیریت غیر مؤثر یا بسترهای شدن و درمان بیماری‌های با اقامت طولانی باشد.

به‌طور کلی مطلوب بودن ضریب اشغال تخت در بیمارستان‌ها، نشان‌دهنده استفاده صحیح از منابع بیمارستان توسط مدیران است. مدیران می‌توانند با راهاندازی و استفاده از تخت‌های فعل در بخش‌های بیمارستان، افزایش کادر درمان مجرب و فراهم‌آوری تسهیلات، ایجاد سیستم پذیرش و نوبتدهی منظم، پیش‌رفته و پویا جهت سهولت دسترسی بیماران و در نهایت افزایش رضایت بیماران از عملکرد بیمارستان، ضریب اشغال تخت را افزایش دهند. در پژوهش حاضر، شاخص گرددش تخت و فاصله گرددش تخت نیز در مقایسه با استاندارد قبل از همه‌گیری کووید در وضعیت مطلوبی قرار داشت اما بعد از همه‌گیری این شاخص‌ها در وضعیت بدی قرار گرفتند. در مطالعه جنیدی و همکاران، شاخص فاصله گرددش تخت و متوسط اقامت بیمار در وضعیت نامطلوب قرار دارد و شاخص‌های دیگر در وضعیت مطلوب یا حتی برخی از آنها در سطح فراتر از حد مطلوب قرار دارند [۲۱]. اگرچه در برخی از مطالعات داخلی و خارجی این شاخص‌ها از میزان‌های استاندارد فاصله داشته و در وضعیت نامطلوبی قرار دارند [۲۲، ۲۳]. این اختلاف می‌تواند به نوعی ناشی از کمبود تقاضا و خالی ماندن تخت بیش از حد باشد یا ممکن است در رویه پذیرش بیماران، نقصی وجود داشته باشد. از این رو، برطرف کردن این موارد می‌تواند شاخص فاصله

پابن لاسو قرار گرفته بود [۳۰]. این بیمارستان به دلیل تک تخصصی بودن و مرکز درمانی سرپایی، گردش تخت بالایی داشت؛ به همین دلیل نتایج عملکردی مشابه‌ای با مطالعه حاضر داشت.

در ناحیه سوم نمودار، بیمارستان‌هایی واقع می‌شوند که از کارایی خوبی برخوردار هستند؛ یعنی این بیمارستان‌ها به بهره‌وری مناسب با حداقل تعداد تخت مورد استفاده رسیده‌اند و در اداره امور، کارایی مطلوبی دارند. مطالعه حاضر نشان داد که در سال ۱۳۹۸ و قبل از همه‌گیری، تنها بیمارستان‌های ۱ و ۳ در ناحیه سوم قرار گرفته‌اند. بهادری و همکاران و همچنین *Asbu* و همکاران در مطالعه خود نشان داده‌اند که به ترتیب ۳۹ و ۲۲ درصد از بیمارستان‌ها در ناحیه ۳ قرار گرفته‌اند [۲۲]. همچنین سجادی و همکاران نشان داده‌اند که ۴۵ درصد از بیمارستان‌های مورد مطالعه خود در ناحیه ۳ قرار گرفته‌اند [۲۷]. در مطالعه‌ای که در بین بیمارستان‌های شهر قاهره در کشور مصر انجام گردیده است، نتایج نشان می‌دهد که در طول دوره مورد بررسی (۲۰۰۸-۲۰۰۶)، به ترتیب ۴۶، ۶۰ و ۵۳ درصد از بیمارستان‌ها در این ناحیه قرار گرفته‌اند [۲۶]. *Nwagbara* در مطالعه *Nabukeera* و همکاران، مطالعه *Rasiah* و همچنین مطالعه *Hafidz* و همکاران نیز به ترتیب ۳۵/۶، ۳۵/۶ و ۳۷ درصد از بیمارستان‌ها در این ناحیه قرار گرفته بودند [۳۴، ۳۲، ۲۳].

در این بررسی، قبل از همه‌گیری کووید-۱۹، مراکز به دلیل ارائه نوع یا انواع خاص خدمات بهداشتی-درمانی یا مرکز ترکیه از کادر پزشکی، پیراپزشکی و اداری مجرب، استفاده برخورداری از کادر پزشکی، پیش‌رفته پزشکی، بهره‌گیری از از تجهیزات و فناوری‌های پیش‌رفته پزشکی، بهره‌گیری از روش‌ها و شیوه‌های نوین مدیریتی یا دسترسی آسان، توانسته بودند ضمن جذب مشتریان بیشتر، با استفاده از برنامه‌ریزی‌های صحیح، بیشترین استفاده از منابع را داشته باشند. از این‌رو، تداوم حرکت در جهت انتقای کارایی بیمارستان‌ها به سوی مطلوبیت، تلاش مدیریت در راستای استقرار دائمی مراکز در ناحیه سوم و نیز تغییر موقعیت بیمارستان‌ها به سمت شمال شرقی نمودار بایستی در اولویت کاری مدیران مراکز قرار گیرد.

در این پژوهش تنها بیمارستان ۴ در سال ۱۳۹۸ در ناحیه ۴ قرار گرفت، اگرچه در سال ۱۴۰۰ هیچ بیمارستانی در این ناحیه قرار نداشت و بیمارستان ۴ در ناحیه ۱ قرار داشت. این بیمارستان اگرچه به نسبت خوب کار نمی‌کند، نسبت تخت‌های بدون استفاده بالا است و از ضریب اشغال تخت نسبتاً قابل قبولی برخوردار نیست. در مطالعه محمدی و همکاران، ۱۷ درصد از بیمارستان‌ها در این ناحیه قرار گرفته‌اند [۲۲]. مرادی و همکاران نیز نشان داده‌اند که به ترتیب ۱ و ۳ بیمارستان قبل و بعد از اجرای طرح تحول نظام سلامت ایران در ناحیه ۴ قرار گرفته بودند [۱۲]. همچنین در مطالعه *Hafidz* و همکاران که در کشور اندونزی

افزایش بی‌رویه این شاخص می‌شوند که این عوامل نیز منجر به تفاوت نتایج مطالعه حاضر با سایر مطالعات شده است.

با توجه به مقایسه‌ای که بر روی عملکرد بیمارستان‌ها بر اساس سه شاخص درصد اشغال تخت، میزان چرخش تخت و متوسط اقامت بیمار با توجه به وضعیت قرارگیری مراکز مورد مطالعه در نواحی چهارگانه نمودار پابن لاسو در سال ۱۳۹۸ و ۱۴۰۰ به دست آمد، بیمارستان‌های ۲ و ۴ در هر دو سال در نواحی یکسان قرار گرفته‌اند و تفاوتی در عملکرد آنها به وجود نیامد اما بیمارستان‌های ۱ و ۳ قبل از همه‌گیری در ناحیه کارا قرار داشتند اما بعد از همه‌گیری این بیمارستان‌ها به منطقه عدم کارا و منطقه ۲ قرار گرفتند. در ناحیه اول نمودار، مراکزی با درصد اشغال و گردش تخت پایین‌تر از میانگین قرار دارند که تعداد تخت به شدت واپسی به تقاضا است و بیمارستان عملکرد ضعیفی را نشان می‌دهد که در این بررسی بیمارستان‌های ۲ و ۴، بعد از همه‌گیری در این ناحیه واقع شدند. در مطالعه محمدی و همکاران و مطالعه *Hafidz* به ترتیب ۳۶ درصد و ۳۷ درصد از بیمارستان‌ها در این ناحیه قرار گرفته‌اند [۳۱، ۳۲]. همچنین در مطالعه بفر و همکاران، سه بیمارستان در ناحیه یک قرار گرفته‌اند [۲۴]. یوسف‌زاده و همکاران نیز نشان داده‌اند که به ترتیب ۴، ۵، ۳ و ۲ بیمارستان در سال‌های ۲۰۱۲ تا ۲۰۱۵ در این ناحیه قرار گرفته بودند که این نتایج با مطالعه حاضر همخوانی دارد [۳۳].

همچنین، با بررسی مطالعات خارجی انجام شده *Nwagbara* و همکاران و مطالعه *Rasiah* نتایج نشان می‌دهد که به ترتیب ۵۰ و ۳۷ درصد از بیمارستان‌ها در ناحیه ۱ قرار گرفته دارند [۲۲، ۳۴]. اگرچه در برخی از مطالعات، هیچ بیمارستانی در این ناحیه قرار نگرفته‌اند [۲۵] که این می‌تواند به دلیل تفاوت در سیستم و سبک مدیریت بیمارستان‌ها باشد.

ناحیه دوم نمودار به آن دسته از مراکزی اختصاص دارد که به سبب نوع خاص فعالیت آنها دارای گردش تخت بالایی هستند (مانند مراکز بستره کوتاه‌مدت یا زنان و زایمان). در این مطالعه نیز بعد از همه‌گیری، بیمارستان‌های ۱ و ۳ در ناحیه دوم قرار گرفتند، بنابراین می‌توان گفت کارایی قابل قبولی در اداره امور نداشتن و توصیه می‌شود مدیریت مرکز به منظور بهبود شاخص‌های عملکردی برنامه‌ریزی نماید و در جهت انتقال مرکز به ناحیه سوم اقدام نماید. *Keliddar* و *Zahiri* در مطالعه خود نشان داده‌اند که ۷ بیمارستان از ۲۶ بیمارستان مورد مطالعه در ناحیه ۲ قرار گرفته بودند [۳۵]. همچنین در مطالعه مهرالحسنی و همکاران، ۹ بیمارستان در این ناحیه قرار گرفته بودند [۳۶]. در مطالعه‌ای که توسط *Iswanto* در یک مرکز درمانی در شهر جاکارتا اندونزی انجام شد، در دوره زمانی بررسی شده این مرکز درمانی در ناحیه دو نمودار

بهبود عملکرد و استفاده بهینه از منابع حوزه درمان هستند بسیار مفید است. با مقایسه شاخص‌های عملکردی با استانداردها و بررسی عملکرد بیمارستان‌های نظامی به وسیله مدل پابن لاسو، علاوه بر آگاهی از میزان انحراف از استانداردها، آن دسته از بیمارستان‌های ناکارا با عملکرد نامناسب نیز شناسایی شدند. بنابرین ضرورت دارد تا مدیران و دست‌اندرکاران بخش بهداشت فراجا در رابطه با بیمارستان‌هایی که در ناحیه ۱ (بیمارستان‌های ناکارا) قرار گرفته‌اند و همچنین شاخص‌هایی که از سطح استاندارد فاصله دارند، اقدامات اصلاحی را در جهت ریشه‌یابی ضعف و بهبود عملکرد به عمل آورند. همچنین، با بررسی و ارزیابی عملکرد مدیریتی و اقتصادی بیمارستان‌های کارا (بیمارستان‌های قرارگرفته در ناحیه ۳) یا سایر بیمارستان‌های داخلی و خارجی با عملکرد مطلوب، عوامل تأثیرگذار بر این موفقیت و مطلوبیت را شناسایی نمود و با الگوبرداری از این عوامل (با تعديل نمودن شرایط مختلف بیمارستان) باعث پیشرفت هر چه سریع‌تر در شاخص‌های مختلف درمانی، اقتصادی و مدیریتی در بیمارستان‌های فراجا شوند.

نکات بالینی و کاربردی در طب انتظامی: با توجه به اثرات نامطلوب همه‌گیری کووید-۱۹ بر عملکرد و کارایی بیمارستان‌های منتخب فراجا، مدیریت بحران و برنامه‌ریزی صحیح در سطح معاونت بهداشت می‌تواند تأثیر بسیاری در کاهش اثرات نامطلوب همه‌گیری کووید-۱۹ داشته باشد. تشکر و قدردانی: بدین‌وسیله نویسنده‌گان از معاونت بهداشت فرماندهی انتظامی جمهوری اسلامی ایران و همچنین تمامی پرسنل بیمارستان‌ها به خاطر همکاری در انجام این تحقیق کمال تشکر را دارند.

تعارض منافع: بدین‌وسیله نویسنده‌گان مقاله تصریح می‌نمایند که هیچ‌گونه تعارض منافعی در قبال مطالعه حاضر وجود ندارد.

سه‌هم نویسنده‌گان: تورج هراتی خلیل‌آباد، جمع آوری داده‌ها و تجزیه و تحلیل داده‌ها؛ پوران رئیسی، ارائه ایده و طراحی مطالعه؛ علی‌اکبر گلمحمدی، طراحی مطالعه؛ همه نویسنده‌گان در نگارش اولیه مقاله و بازنگری آن سه‌هم بودند و همه با تأیید نهایی مقاله حاضر مسئولیت دقت و صحت مطالب مندرج در آن را می‌پذیرند.

منابع مالی: مطالعه حاضر حاصل بخشی از طرح پژوهشی به شماره "۹۱۰۰۳۶۸" است که با حمایت مالی فرماندهی انتظامی جمهوری اسلامی ایران انجام شده است.

## References

1. Barnum H, Kutzin J. Public hospitals in developing countries: resource use, cost, financing. Washington. 1993. <http://documents.worldbank.org/curated/en/919871468740383421/Public-hospitals-in-developing-countries-resource-use-cost-financing>
2. Lotfi F, Bastani P, Hadian M, Hamidi H, Motlagh S, Delavari S. Performance assessment of hospitals affiliated with Iran University of Medical Sciences: application of economic techniques in health care area. J Health Admin. 2015;18(59):43-54. <https://www.semanticscholar.org/paper/>

انجام شده، تنها یک بیمارستان عمومی با تعداد تخت کمتر از ۸۹ در این ناحیه قرار داشته است [۳۲]. به طور کلی، در این مطالعه با تمرکز بر عملکرد بیمارستان‌های نظامی و مقایسه شاخص‌های عملکردی با شاخص‌های استاندارد از یک سو و از سوی دیگر ارزیابی عملکرد بیمارستان‌ها با کاربرد مدل پابن لاسو قبل و بعد از همه‌گیری کووید-۱۹، برای اولین بار به این مهم پرداخته شد. اگرچه، همچون اغلب پژوهش‌ها، این مطالعه با محدودیت‌هایی همراه بود؛ به دلیل مشکلات و محدودیت‌ها در جمع‌آوری داده‌های مورد نیاز برای سایر بیمارستان‌های نظامی، توانایی تعمیم نتایج مطالعه حاضر به سایر بیمارستان‌ها وجود نداشت. از دیگر محدودیت‌های این پژوهش می‌توان به این اشاره نمود که با توجه به ماهیت نظامی بودن بیمارستان‌ها، نیاز است تا برای هر شاخص سطح استانداردی متفاوت از سطح استاندارد ارائه شده توسط وزارت بهداشت، درمان و آموزش پزشکی و مختص بیمارستان‌های نظامی تعریف گردد. از سویی دیگر، استفاده از مدل پابن لاسو تنها نشان‌دهنده بهره‌برداری از منابع در دسترس بیمارستان است و این مدل و به هیچ وجه کیفیت و اهمیت مراقبت سلامت را در بر نمی‌گیرد.

در مطالعه حاضر، عدم دسترسی به برخی شاخص‌های مالی همچون هزینه تجهیزات محافظه شخصی و شاخص‌های عملکردی همچون مرگ و میر ناشی از کووید-۱۹ در بیمارستان‌های فراجا و همچنین عدم دسترسی به اطلاعات تعداد بیشتری از بیمارستان‌های تحت پوشش فراجا، از جمله محدودیت‌هایی بود که پیشنهاد می‌شود در مطالعات آتی با رفع چنین مواردی، پایه‌ریزی برای انجام مطالعه جدید انجام شود. پیشنهاد می‌گردد در مطالعات آتی برای ارتقای شاخص‌های عملکرد این بیمارستان‌ها با استفاده از رویکردهای نوین کیفی، خصوصاً شش سیگما که بر افزایش کیفیت و کاهش هزینه به طور هم‌زمان مبتنی است، به تدوین روش‌ها و رویه‌های شفاف و مشخص درمانی به منظور پیشگیری از عفونت‌های احتمالی که باعث افزایش میانگین مدت اقامت و کاهش میزان گردش تخت می‌گردد، توجه نمود. همچنین برای پژوهش‌های آتی پیشنهاد می‌گردد که این مطالعه در دوره‌های زمانی و تعداد بیمارستان‌های بیشتری انجام گردد.

## نتیجه‌گیری

نتایج مطالعه حاضر برای مدیران و سیاستگذاران بخش بهداشت بیمارستان‌های نظامی که در جستجوی روش‌های

Performance-assessment-of-hospitals-affiliated-with-Lotfi-Bastani/597bd663facfd87a6b3c06a3b485ec4af8833010

3. Strunk BC, Ginsburg PB, Gabel JR. Tracking health care costs: Growth accelerates again in 2001. *Health Aff.* 2002;21(1):299-310. <https://doi.org/10.1377/hlthaff.w2.299>
4. Duma O, Munteanu L. The resources utilization pattern in a general university hospital. *J Preventive Med.* 2002;10(2):3-11. <https://www.semanticscholar.org/paper/THE-RESOURCES-UTILIZATION-PATTERN-IN-A-GENERAL-Duma-Munteanu/d7095240f9d986798c8c5d9cea7ed09646108dbf>
5. Goshtasebi A, Vahdaninia M, Gorgipour R, Samanpour A, Maftoon F, Farzadi F, et al. Assessing hospital performance by the Pabon Lasso model. *Iran J Public Health.* 2009;38(2):119-24. <https://ijph.tums.ac.ir/index.php/ijph/article/view/2996/3197>
6. Khalilabad TH, Asl AN, Raeissi P, Shali M, Niknam N. Assessment of clinical and paraclinical departments of military hospitals based on the Pabon Lasso Model. *J Educ Health Prom.* 2020 Jan 1;9(1):59.
7. Hadi M, Sajadi H, Sajadi Z. Is there any method to compare key indicators of hospital performance simultaneously? *Health Inf Manage.* 2011;8:75-85. [http://him.mui.ac.ir/him/index.php/him/article/view/article\\_11053\\_d85f35db999fd91d85c5ec77800f7038.pdf?lang=en](http://him.mui.ac.ir/him/index.php/him/article/view/article_11053_d85f35db999fd91d85c5ec77800f7038.pdf?lang=en)
8. Gholipour K, Delgoshaei B, Masudi-Asl I, Hajinabi K, Iezadi S. Comparing performance of Tabriz obstetrics and gynaecology hospitals managed as autonomous and budgetary units using Pabon Lasso method. *Australas Med J.* 2013;6(12):701-7. <https://doi.org/10.4066/amj.2013.1903>
9. Mehrtak M, Yusefzadeh H, Jaafaripooyan E. Pabon lasso and data envelopment analysis: A complementary approach to hospital performance measurement. *Glob J Health Sci.* 2014;6(4):107-116. <https://doi.org/2%10.5539Fgjhs.v6n4p107>
10. Hejduková P, Kureková L. National health systems' performance: evaluation WHO indicators. *Procedia-Social and Behavioral Sciences.* 2016 Sep 12;230:240-8
11. Lotfi F, Kalhor R, Bastani P, Zadeh NS, Eslamian M, Dehghani MR, et al. Various indicators for the assessment of hospitals 'performance status :differences and similarities .*Iran Red Crescent Med J*:4(16);2014 .e12950 .<https://doi.org/2%10.5812/Fircmj12950>.
12. Moradi G, Piroozi B, Safari H, Nasab NE, Bolbanabad AM, Yari A. Assessment of the efficiency of hospitals before and after the implementation of health sector evolution plan in Iran based on Pabon Lasso model .*Iran J Public Health.* .389-95:(3)46;2017<https://pubmed.ncbi.nlm.nih.gov/28435825/>
13. Younsi M .Performance of Tunisian public hospitals :A comparative assessment using the Pabón Lasso model .*Int J Hospital Res*159-:(4)3;2014 .66[http://ijhr.iums.ac.ir/article.7708\\_html](http://ijhr.iums.ac.ir/article.7708_html)
14. Dargahi H, Darrudi A, Rezaei Abgoli M. The effect of Iran health system evolution plan on Tehran university of medical sciences hospitals' performance indicators: a case study using the Pabon Lasso model. *J School Public Health Institute Public Health Res* .228-39:(3)16;2018 .[https://sjsphtums.ac.ir/browse.php?a\\_id&5675=sid&1=slc\\_lang=en](https://sjsphtums.ac.ir/browse.php?a_id&5675=sid&1=slc_lang=en)
15. Sadeghifar J, Rezaee A, Hamouzade P, Taghavi-Shahri S. The relationship between performance indicators and hospital accreditation degree in Urmia university of medical sciences. *J Nurs Midwifery.* 2011;9(4):270-6.<http://unmf.umsu.ac.ir/article-510-1-en.html>
16. Kavosi Z, Goudarzi S, Almasian-Kia A. Evaluating of hospital efficiency by using of paben lasso model in Lorestan university of medical sciences. *J Payavard Health Sci.* 2013;6(5):365-75 .[https://payavard.tums.ac.ir/browse.php?a\\_code=A-10-&12-25sid&1=slc\\_lang=en](https://payavard.tums.ac.ir/browse.php?a_code=A-10-&12-25sid&1=slc_lang=en)
17. Arzamani M, Pournaghi S, Seyed-Katooli S, Jafakesh-Moghadam A. The comparison of indicators in educational hospitals of North Khorasan Universities of Medical Sciences with the Standards of the Country in 2011-2012. *J North Khorasan Univ Med Sci.* 2012;4(4):513-22 .<http://journal.nkums.ac.ir/article-163-1-en.html>
18. Zhu Z. Impact of different discharge patterns on bed occupancy rate and bed waiting time: a simulation approach. *J Med Eng Technol.* 2011;35(6-7):338-43 .<https://doi.org/10.3109/011.595528>
19. Elayyat AH, Sadek A. Hospital utilization pattern in a hepatogastroenterology department of a research institute hospital, from 2004 to 2013. *J Egypt Public Health Assoc.* 2016;91(2):59-64 .<https://doi.org/10.1097/epx.0000482537.88140.0.c>
20. Uy S, Akashi H, Taki K, Ito K. Current problems in national hospitals of Phnom Penh: finance and health care. *Nagoya J Med Sci.* 2007;69(1-2):71-9. <https://pubmed.ncbi.nlm.nih.gov/17378183/>
21. Jonaidi N, Sadeghi M, Izadi M, Ranjbar R. Comparison of performance indicators in one of hospitals of Tehran with national standards. *Iran J Mil Med.* 2011;12(4):223-8 .[http://militarymed.ir/browse.php?a\\_id&752=sid&1=slc\\_lang=en](http://militarymed.ir/browse.php?a_id&752=sid&1=slc_lang=en)
22. Bahadori M, Sadeghifar J, Hamouzadeh P, Hakimzadeh S, Nejati M. Combining multiple indicators to assess hospital performance in Iran using the Pa-

## ۱۵ تأثیر همه‌گیری کووید-۱۹ بر عملکرد و کارایی بیمارستان‌های منتخب نظامی: یک مطالعه مقطعی

ben Lasso model. *Australas Med J.* 2011;4(1):175-9. <https://doi.org/10.4066/amj2011.620>.

23. Nabukeera M, Boerhannoeddin A, RA RN. An evaluation of health centers and hospital efficiency in Kampala capital city authority Uganda; using Pabon Lasso technique. *J Health Translate Med.* 2015;18(1):12-7. <https://doi.org/10.22452/jumme.v18n1.3>

24. Baghbanian A, Barfar E, Khammarnia M, Panahi M. An Investigation of performance at hospitals affiliated with Zahedan University of Medical Sciences; Using Pabon Lasso technique. *Med Public Health J.* 2014;1(1):31-7. [https://scholar.google.com/scholar\\_lookup?journal=Medicine+and+-+Public+Health+Journal&title=An+Investigation+of+Performance+at+Hospitals+Affiliated+with+Zahedan+University+of+Medical+Sciences;+Using+Pabon+Lasso+Technique&author=E+Barfar&author=M+Khammarnia&author=A+Baghbanian&author=M+Panahi&volume&1=issue&1=publication\\_year&2014=pages&31-7=](https://scholar.google.com/scholar_lookup?journal=Medicine+and+-+Public+Health+Journal&title=An+Investigation+of+Performance+at+Hospitals+Affiliated+with+Zahedan+University+of+Medical+Sciences;+Using+Pabon+Lasso+Technique&author=E+Barfar&author=M+Khammarnia&author=A+Baghbanian&author=M+Panahi&volume&1=issue&1=publication_year&2014=pages&31-7=)

25. Kalhor R ,Salehi A ,Keshavarz A ,Bastani P, Heidari Orajloo P .Assessing Hospital Performance Using Pabon LassoAnalysis. *Int J Hosp Res.* .149-54;(3)2;2013[https://scholar.google.com/scholar?hl=en&as\\_sdt=2005=sciolt2%0=C&5cites&7838679320540597263=scipsc&q=Assessing+hospital+performance+using+Pabon+Lasso+analysis&btnG=](https://scholar.google.com/scholar?hl=en&as_sdt=2005=sciolt2%0=C&5cites&7838679320540597263=scipsc&q=Assessing+hospital+performance+using+Pabon+Lasso+analysis&btnG=)

26. Ajlouni M. The relative efficiency of Jordanian public hospitals using data envelopment analysis Pabon Lasso diagram. *Global J Business Res.* .59-72;(2)7;2013[https://www.researchgate.net/publication\\_256034407/The\\_Relative\\_Efficiency\\_of\\_Jordanian\\_Public\\_Hospitals\\_Using\\_Data\\_Envelopment\\_Analysis\\_and\\_Pabon\\_Lasso\\_Diagram](https://www.researchgate.net/publication_256034407/The_Relative_Efficiency_of_Jordanian_Public_Hospitals_Using_Data_Envelopment_Analysis_and_Pabon_Lasso_Diagram)

27. Pabon Lasso H. Evaluating hospital performance through simultaneous application of several indicators. PAHO. 1986;20(4):341-57. <https://iris.paho.org/bitstream/handle/27221/10665.2/ev20n4p341.pdf?sequence=1&isAllowed=y>

28. Fries JF, Koop CE, Sokolov J, Beadle CE, Wright D. Beyond Health Promotion: Reducing Need And Demand For Medical Care: Health care reforms to improve health while reducing costs. *Health affairs.* 1998 Mar;17(2):70-84.

29. Mahapatra P ,Berman P .Using hospital activity indicators to evaluate performance in Andhra Pradesh ,India .*Int J Health Plann Manage.* .199-211;(2)9;1994<https://doi.org/10.1002/hpm4740090206>.

30. Iswanto A .Measuring hospital efficiency through Pabon Lasso analysis :an empirical study in Kemang Medical Care) KMC .(SSRN Electronic J .2015:1-8 <http://dx.doi.org/10.2139/ssrn2629901>.

31. Mahboubi M, Ziapour A, Mahboubi M, Farroukh A, Amani N. Performance evaluation of hospitals under supervision of Kermanshah medical sciences using Pabon Lasso diagram of a five-year period (2008-2012). *Life Sci J.* 2014;11(1):77-81. [https://research.kums.ac.ir/webdocument/load.action?webdocument\\_code&2000=masterCode3006194=](https://research.kums.ac.ir/webdocument/load.action?webdocument_code&2000=masterCode3006194=)

32. Hafidz F, Ensor T, Tubeuf S. Assessing health facility performance in Indonesia using the Pabón-Lasso model and unit cost analysis of health services. *Int J Health Plann Manage.* 2018;33(2):e541-56. <https://doi.org/10.1002/hpm.2497>

33. Hasan Y, Parviz S, Bahram N. Health system reform plan and performance of hospitals: An Iranian case study. *Mater Sociomed.* 2017;29(3):201-6. <https://doi.org/10.5455/msm.206-2017.29.201>

34. Nwagbara VC, Rasiah R. Rethinking health care commercialization: evidence from Malaysia. *Global Health.* 2015;11(1):1-8. <https://link.springer.com/article/10.1186/s-0131-015-12992y>

35. Zahiri M, Keliddar I. Performance evaluating in hospitals affiliated in Ahwaz University of medical sciences based on PABON LASSO model. *Hospital.* 2012;11(3):37-44. [https://jhosp.tums.ac.ir/browse.php?a\\_id&20=sid&1=slc\\_lang=fa](https://jhosp.tums.ac.ir/browse.php?a_id&20=sid&1=slc_lang=fa)

36. Mehralhasani M, Yazdi-Feiz-Abadi V, Barfe-Shahrbabak T. Assessing performance of Kerman province's hospitals using Pabon Lasso diagram between 2008 and 2010. *J Hospital.* 2013;12(4):99-107. <https://www.sid.ir/paper/106634/en>

37. Asbu E, Walker O, Kirigia J, Zawaira F, Magombo F, Zimpita P et al. Technical efficiency of district hospitals in Malawi, an exploratory assessment using data envelopment analysis. *African Health Monitor.* 2012;14. [file:///C:/Users/1/Desktop/Downloads/Efficiencyassessmentreport20%1-3\).pdf](file:///C:/Users/1/Desktop/Downloads/Efficiencyassessmentreport20%1-3).pdf)